首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider a class of impulsive Caputo fractional-order cellular neural networks with time-varying delays. Applying the fractional Lyapunov method and Mittag-Leffler functions, we give sufficient conditions for global Mittag-Leffler stability which implies global asymptotic stability of the network equilibrium. Our results provide a design method of impulsive control law which globally asymptotically stabilizes the impulse free fractional-order neural network time-delay model. The synchronization of fractional chaotic networks via non-impulsive linear controller is also considered. Illustrative examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

2.
In this paper, the projective synchronization of neural networks with mixed time-varying delays and parameter mismatch is discussed. Due to parameter mismatch and projective factor, complete projective synchronization cannot be achieved. Therefore, a new weak projective synchronization scheme is proposed to ensure that coupled neural networks are in a state of synchronization with an error level. Several criteria are derived and the error level is estimated by applying a generalized Halanay inequality and matrix measure. Finally, a numerical example is given to verify the efficiencies of theoretical results.  相似文献   

3.
4.
This paper addresses the passivity problem for uncertain neural networks with both discrete and distributed time-varying delays. It is assumed that the parameter uncertainties are norm-bounded. By construction of an augmented Lyapunov–Krasovskii functional and utilization of zero equalities, improved passivity criteria for the networks are derived in terms of linear matrix inequalities (LMIs) via new approaches. Through three numerical examples, the effectiveness to enhance the feasible region of the proposed criteria is demonstrated.  相似文献   

5.
6.
The finite-time synchronization problem of a class of complex dynamical networks with time-varying delays is addressed in this paper. The network topology is assumed to be directed and weakly connected. By introducing a special zero row-sum matrix and combining the Lyapunov?CKrasovskii functional method and the Kronecker product technique, a sufficient condition is presented, which consist of two simple low-dimensional matrix inequalities. Illustrative example is given to show the feasibility of the proposed method.  相似文献   

7.
In this paper, the adaptive projective synchronization of dynamical network with distributed time delays is investigated. Network with unknown topology and network with both unknown topology and system parameters of node dynamics are considered respectively. Based on Lyapunov stability theory and LaSalle’s invariance principle, the sufficient conditions for achieving projective synchronization are obtained. Numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

8.
Chen  Wu-Hua  Liu  Lijun  Lu  Xiaomei 《Nonlinear dynamics》2017,87(1):535-551
Nonlinear Dynamics - This paper revisits the exponential synchronization problem of two identical reaction–diffusion neural networks with Dirichlet boundary conditions and mixed delays via...  相似文献   

9.
10.
This paper investigates the adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling, in which the weights of links between two connected nodes are time varying. By the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization are obtained, and a hybrid controller, that is, an adaptive feedback controller with impulsive control effects is designed. The numerical examples are presented to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

11.
Zheng  Mingwen  Li  Lixiang  Peng  Haipeng  Xiao  Jinghua  Yang  Yixian  Zhao  Hui 《Nonlinear dynamics》2017,89(4):2641-2655
Nonlinear Dynamics - This paper mainly investigates the finite-time projective synchronization problem of memristor-based delay fractional-order neural networks (MDFNNs). By using the definition of...  相似文献   

12.
Zhang  Xiaoyu  Lv  Xiaoxiao  Li  Xiaodi 《Nonlinear dynamics》2017,90(3):2199-2207
Nonlinear Dynamics - In the framework of sampled-data control, this paper deals with the lag synchronization of chaotic neural networks with time delay meanwhile taking the impulsive control into...  相似文献   

13.
In this paper, the problem of passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing an augmented Lyapunov–Krasovskii’s functional and some novel analysis techniques, improved delay-dependent criteria for checking the passivity of the neural networks are established. The proposed criteria are represented in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.  相似文献   

14.
Liu  Yang  Zhang  Dandan  Lu  Jianquan 《Nonlinear dynamics》2017,87(1):553-565
Nonlinear Dynamics - In this paper, we employ a novel method for solving the problem of the global exponential stability of quaternion-valued recurrent neural networks (QVNNs) with time-varying...  相似文献   

15.
In this paper, projective synchronization of drive-response coupled dynamical network with delayed system nodes and coupling time-varying delay is investigated via impulsive control, where the scaling factors are different from each other. Different controllers are designed to achieve the projective synchronization: only impulsive control is used when the scaling factors need extra limitation, while an extra controller, that is, a simple linear feedback controller, is added when the scaling factors don??t need extra limitation. Based on the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization of such coupled network are established, and an estimate of the upper bound of impulsive intervals ensuring global exponential synchronization of drive-response coupled dynamical network is also given. Numerical examples on the time-delay Lorenz chaotic systems are presented finally to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

16.
This paper investigates the global asymptotic stability problem for recurrent neural networks with multiple time-varying delays. Using the free-weighting matrix technique, and incorporating the interconnected information between the upper bounds of multiple time-varying delays, two less conservative delay-dependent asymptotic stability conditions are proposed, which are expressed by linear matrix inequalities, and can be conveniently solved by the existing softwares. Numerical examples show the reduce conservatism of the obtained conditions.  相似文献   

17.
The paper is concerned with the state estimation problem for a class of neural networks with Markovian jumping parameters. The neural networks have a finite number of modes and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time-delays, the dynamics of the estimation error are globally stable in the mean square. A new type of Markovian jumping matrix P i is introduced in this paper. The discrete delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI conditions.  相似文献   

18.
A class of Hopfield neural network with time-varying delays and impulsive effects is concerned. By applying the piecewise continuous vector Lyapunov function some sufficient conditions were obtained to ensure the global exponential stability of impulsive delay neural networks. An example and its simulation are given to illustrate the effectiveness of the results.  相似文献   

19.
This paper considered exponential synchronization in fractional-order memristive BAM neural networks (FMBAMNNs) with time delay via switching jumps mismatch. Exponential function is introduced for studying fractional-order differential system. According to double-layer structure of FMBAMNNs, two controllers are designed for the response FMBAMNNs. Particularly, more wide ranges of impulsive effects, which are affected by fractional-order \(\alpha \), are discussed in detail. One case is that the impulsive effect contributes to system convergence, and the other is that the impulsive effect destroys the system convergence. Based on the fractional stability theory and the definition of average impulsive interval, several criteria for achieving synchronization of FMBAMNNs are established. For different impulsive effects, the rate of convergence is precisely expressed. Finally, numerical examples verify the validity of the theoretical results.  相似文献   

20.
In this paper, the synchronization of Takagi–Sugeno (T-S) fuzzy complex networks with time-varying delays and adaptive coupling weights is studied. Using the pinning control and adaptive feedback strategy, a new general class of complex networks with fuzzy logic is proposed and its synchronization is investigated in terms of linear matrix inequalities (LMIs). The adaptive update law of coupling weight is only related to the dynamical behaviors of directly connected nodes. Based on the Lyapunov stability theory, it is proven that the synchronization of the addressed network can be achieved under those control strategies. Finally, two numerical examples are given to verify the effectiveness of our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号