首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel N‐1‐sulfonylcytosine‐cyclam conjugates 1 and 2 conjugates are ionized by electrospray ionization mass spectrometry (ESI MS) in positive and negative modes (ES+ and ES) as singly protonated/deprotonated species or as singly or doubly charged metal complexes. Their structure and fragmentation behavior is examined by collision induced experiments. It was observed that the structure of the conjugate dictated the mode of the ionization: 1 was analyzed in ES mode while 2 in positive mode. Complexation with metal ions did not have the influence on the ionization mode. Zn2+ and Cu2+ complexes with ligand 1 followed the similar fragmentation pattern in negative ionization mode. The transformation from 2°‐amine in 1 to 3°‐amine of cyclam ring in 2 leads to the different fragmentation patterns due to the modification of the protonation priority which changed the fragmentation channels within the conjugate itself. Cu2+ ions formed complexes practically immediately, and the priority had the cyclam portion of the ligand 2 . The structure of the formed Zn2+ complexes with ligand 2 depended on the number of 3° amines within the cyclam portion of the conjugate and the ratio of the metal:ligand used. The cleavage of the cyclam ring of metal complexes is driven by the formation of the fragment that suited the coordinating demand of the metal ions and the collision energy applied. Finally, it was shown that the structure of the cyclam conjugate dictates the fragmentation reactions and not the metal ions.  相似文献   

2.
The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2'-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.  相似文献   

3.
Tetraaza complexes with M(2+) were produced in the gas phase by Electrospray (ESI) of solutions containing salts of M(2+)dinitrates and a tetraaza compound such as cyclam. The complex CyclM(2+) formed in solution and transferred to the gas phase via ESI was introduced into a reaction chamber containing known partial pressures of a ligand L. Equilibria between CyclM(2+) and L establish CyclML(n)(2+) = CyclML(n-1)(2+) + L and the equilibrium constants K(n,n-1) are determined with a mass spectrometer. Determinations at different temperatures lead to not only the DeltaG(0)(n,n-1) values but also the DeltaH(0)(n,n-1) and DeltaS(0)(n,n-1) values. Data for n = 1, 2, and 3 were obtained for L = H(2)O and CH(3)OH. The DeltaG(0)(1,0), DeltaH(0)(1,0) as well as DeltaG(0)(2,1), DeltaH(0)(2,1) values, when M(2+) = Mn(2+) and Zn(2+), were larger than those for Ni(2+) and Cu(2+). The ligand field theory and the Irvine-Williams series predict a reverse order, i.e., stronger bonding with Ni(2+) and Cu(2+) for simple ligand reactions with M(2+). An examination of the differences of the reactions in solution and gas phase provides a rationale for the observed reverse order for the CyclM(2+) + L reactions. Differences between gas phase and solution are found also when M(2+) = Cu(2+), but the tetraaza macrocycle is changed from, 12-ane to 14-ane to 15-ane. The strongest bonding in solution is with the 14-ane while in the gas phase it is with the 15-ane. Bond free energies, DeltaG(0)(1,0), for CyclCu(2+) with L = H(2)O, CH(3)OH, NH(3), C(2)H(5)OH, C(3)H(7)OH, (C(2)H(5))(2)O, and CH(3)COCH(3), are found to increase in the above order. The order and magnitude of the DeltaG(0)(1,0) values is close to DeltaG(0)(1,0) values observed with potassium K(+) and the same ligands. These results show that the cyclam in CyclCu(2+) leads to an extensive shielding of the +2 charge of Cu(2+). Ligands with gas phase basicities that are relatively high, lead to deprotonation of CyclM(2+). The deprotonation varies with the nature of M(2+) and provides information on the extent of electron transfer from the N atoms of the cyclam, to the M(2+) ions.  相似文献   

4.
Divalent metal complexes of phosphocholines, [Metal(II)(L)(n)](2+) (where Metal=Cu(2+), Co(2+), Mg(2+), and Ca(2+), L=1,2-dihexanoyl-sn-glycero-3-phosphocholine [6:0/6:0GPCho] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [16:0/18:1GPCho] and n=2-5), were formed upon electrospray ionization mass spectrometry (ESI/MS) of 8 mM solution of phosphocholine (L) with 4 mM metal salt (Metal). The electron capture dissociation (ECD) reactions of these [Metal(II)(L)(n)](2+) complexes were examined via Fourier-transform ion-cyclotron resonance mass spectrometry. A rich and complex chemistry was observed, including charge reduction and fragmentation involving losses of a methyl radical, trimethylamine, and the acyl chains. The predominant reaction channel was dependent on the size (n) of the complex, the metal and ligand used, and the size of the acyl chain. Thus charge reduction dominates the ECD spectra of the larger phosphocholine, 16:0/18:1GPCho, but is largely absent in the smaller 6:0/6:0GPCho. For complexes of 16:0/18:1GPCho, n=4-5, fragmentation from the head group mainly occurs via loss of the methyl radical and trimethylamine. At n=3, the relative abundance of fragments due to loss of acyl chain radicals increases. The abundances of ions arising from these radical losses increase further for the n=2 complexes, thereby providing information on the composition and position of the 16:0 and 18:1 acyl groups. Thus ECD of metal complexes provides structurally useful information on the phosphocholine, including the nature of the head group, the acyl chains, and the positions of the acyl chains.  相似文献   

5.
The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.  相似文献   

6.
The new bis(ferrocene)-cyclam macrocycle 1,8-bis(ferrocenylmethyl)-1,4,8,11-tetraazacyclotetradecane, denoted L, has been synthesized. Two Cu(II) complexes with L have been isolated and characterized from X-ray structure determination and electrochemical studies. These two LCu(II) complexes correspond to the type I (ferrocenyl subunits in the same side of the cyclam plane) and type III (ferrocenyl subunits above and below the cyclam plane) isomers. The type I LCu(II) complex was synthesized from L and a Cu(2+) salt, while the type III isomer was obtained by oxidation in air or by comproportionation of the Cu(I) complex. The interconversion between type I and type III LCu(II) complexes is negligible in acetonitrile and slow in dimethyl sulfoxide but fast via an electrochemical reduction-reoxidation cycle. According to UV-vis and electrochemical characterizations, the type III isomer is thermodynamically more stable and the type I isomer is kinetically favored. A type III LNi(II) complex was also isolated and characterized by X-ray diffraction analysis and from electrochemical studies.  相似文献   

7.
We have synthesized a dendrimer (1) consisting of a 1,4,8,11-tetraazacyclotetradecane (cyclam) core, appended with four benzyl substituents that carry, in the 3- and 5-positions, a dansyl amide derivative (of type 2), in which the amide hydrogen is replaced by a benzyl unit that carries an oligoethylene glycol chain in the 3- and 5-positions. All together, the dendrimer contains 16 potentially luminescent moieties (eight dansyl- and eight dimethoxybenzene-type units) and three distinct types of multivalent sites that, in principle, can be protonated or coordinated to metal ions (the cyclam nitrogen atoms, the amine moieties of the eight dansyl units, and the 16 oligoethylene glycol chains). We have studied the absorption and luminescence properties of 1, 2, and 3 in acetonitrile and the changes taking place upon titration with acid and a variety of divalent (Co2+, Ni2+, Cu2+, Zn2+), and trivalent (Nd3+, Eu3+, Gd3+) metal ions as triflate and/or nitrate salts. The results obtained show that: 1) double protonation of the cyclam ring takes place before protonation of the dansyl units; 2) the oligoethylene glycol chains do not interfere with protonation of the cyclam core and the dansyl units in the ground state, but affect the luminescence of the protonated dansyl units; 3) the first equivalent of metal ion is coordinated by the cyclam core; 4) the interaction of the resulting cyclam complex with the appended dansyl units depends on the nature of the metal ion; 5) coordination of metal ions by the dansyl units follows at high metal-ion concentrations; 6) the effect of the metal ion depends on the nature of the counterion. This example demonstrates that dendrimers may exhibit complete functionality resulting from the integration of the specific properties of their component units.  相似文献   

8.
Cuprous ion is found to be quite reactive towards disulphide present in a macrocycle. Thus, when [Cu(MeCN)4] BF4 or [Cu(MeCN)4]ClO4 is allowed to reflux in acetonitrile with a ten-membered macrocycle containing two amino nitrogens and one disulphide donor in an atmosphere of nitrogen, electron transfer takes place from the metal centre to the disulphide group. As a result, copper is oxidised to the + 2 state and the disulphide reduced to thiolates. The thiolates then bind the Cu(II) and form discrete and neutral CuN2S2 complexes. Syntheses of two new CuN2 S2 complexes have been achieved following this route. The reactions take place smoothly and give the desired product in excess of 25% yield with respect to the macrocycle. Electronic absorption spectral results are consistent with a nearly square planar geometry. Each of the two complexes isolated exhibits quasireversible Cu(II)/Cu(I) couple with Ef near — 0.3 V vs SCE. Both the complexes are further characterised by room temperature magnetic susceptibility, EPR spectroscopy at 298 and 77 K and elemental analyses.  相似文献   

9.
Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.  相似文献   

10.
Electrospray ionization-tandem mass spectrometry was used to study the effects of the metal ion identity and π-cation interactions on the dissociation pathways of metal-bis(peptide) complexes, where the metal is either Mn(2+), Co(2+), Ni(2+), Cu(2+), or Zn(2+); and the peptide is either FGGF, GGGG, GF, or GG, where G is glycine and F is phenylalanine. The [(FGGF)(FGGF-H) + M(2+)](+) and [(GGGG)(GGGG-H) + M(2+)](+) complexes dissociated by losing one FGGF or GGGG, respectively. Relative binding affinities were measured using the crossover points, where the parent and product ions were equal in ion abundance and a normalized-collision energy scale. The results indicate the relative binding affinities for FGGF and GGGG follow the same order with respect to the transition metal ion identity: Cu(2+) < Ni(2+) < Mn(2+) ≈ Zn(2+) < Co(2+), and the π-cation interactions in the FGGF complex have a measureable stabilizing effect. In contrast, the main fragmentation channels of [(GF)(GF-H) + M(2+)]+ and [(GG)(GG-H) + M(2+)](+) are loss of CO(2) and 2CO(2) with the [(GF)(GF-H) + M(2+)](+) complex also exhibiting cinnamic acid ,GF, residual glycine, cinnamate and styrene loss.  相似文献   

11.
Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) is applied for the investigation of C(2)-ceramide complexes with transition metal ions. Ceramide plays an important role in the regulation of various signaling pathways leading to proliferation, differentiation or apoptotic cell death. The formation and fragmentation of doubly charged cluster ions as well as singly charged cluster ions of C(2)-ceramide with transition metal ions (Mn(2+), Fe(2+), Co(2+) and Ni(2+)) are studied by ESI-MS/MS in the positive mode. Tube lens offset voltage and concentrations of C(2)-ceramide and transition metals are optimized to determine the best conditions for generating doubly charged cluster ions. The fragmentation pathways of metal ion complexes with C(2)-ceramide and the compositions of these complexes are determined by collision induced dissociation (CID). All transition metal ions (Mn(2+), Fe(2+), Co(2+) and Ni(2+) except Cu(2+)) shows similar complexation with C(2) ceramide. The unique complexation behavior of copper(II) is responsible for the different geometry of the complexes and relatively lower affinity of ceramide to copper(II) than those to other transition metals.  相似文献   

12.
The interaction of metal cyclams with carboxylate groups is thought to play an important role in their binding to the CXCR4 chemokine receptor and in their anti-HIV activity. Here we report the synthesis of acetate, phthalate, perchlorate and chloride complexes of Zn(II) cyclam (1,4,8,11-tetraazacyclotetradecane). The X-ray crystal structures of [Zn(cyclam)(phthalate)](n)(CH(3)OH)(2n) and [Zn(cyclam)(H(2)O)(2)](OAc)(2) contain octahedral Zn(II) centres. Phthalate acts as a bridging ligand in the former complex, binding through monodentate carboxylate groups, and giving rise to infinite chains in the lattice together with extensive hydrogen bonding between carboxylate donor oxygen atoms and amine and methanol acceptor atoms. The uncoordinated acetate groups and the aqua ligand in the acetate complex are also involved in a rich network of hydrogen bonds and this may account for the unusually long Zn[bond]O distance (2.27 A). In both crystalline complexes, the macrocycle adopts the trans-III (S,S,R,R) configuration. 1D (1)H NMR spectra of all four complexes have been fully assigned by a combination of 2D [(1)H, (1)H] COSY and TOCSY, and [(1)H, (13)C] and [(1 )H, (15)N] HSQC NMR data. In aqueous solution, the stable trans-III configuration found in the solid-state equilibrates slowly (hours at 298 K) with trans-I (R,S,R,S) and cis-V (R,R,R,R) configurations. The trans-III configuration is predominant in aqueous solution for both the chloride and perchlorate complexes, but for the acetate and phthalate complexes, the cis-V configuration dominates. Carboxylate groups appear to stabilize the cis-V configuration in solution through Zn(II) coordination and hydrogen bonding. Titration of the chloride Zn(II)-cyclam complex with acetate confirmed that carboxylates strongly induce formation of the cis-V configuration. This implies that carboxylates can exert a strong influence over configurational selectivity. Cyclam NH hydrogen bonding is prevalent both in the solid state and in solution, and is relevant to the anti-HIV activity of Zn(II) and other metal cyclam complexes and to their ability to recognize the CXCR4 transmembrane co-receptor.  相似文献   

13.
The effect of cation charge site on gas-phase ion/ion reactions between multiply protonated model peptides and singly charged anions has been examined. Insights are drawn from the quantitative examination of the product partitioning into competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer followed by dissociation (ETD) versus electron transfer without dissociation (ET, no D), and fragmentation of backbone bonds versus fragmentation of side chains. Peptide cations containing protonated lysine, arginine, and histidine showed similar degrees of electron transfer, which were much higher than the peptide having fixed-charge sites, that is, trimethyl ammonium groups. Among the four types of cation charge sites, protonated histidine showed the highest degree of ET, no D, while no apparent intact electron-transfer products were observed for peptides with protonated lysine or arginine. All cation types showed side chain losses with arginine yielding the greatest fraction and lysine the smallest. The above trends were observed for each electron-transfer reagent. However, proton transfer was consistently higher with 1,3-dinitrobeznene anions, as was the fraction of side-chain losses. The partitioning of products among the various electron-transfer channels provides evidence for several of the mechanisms that have been proposed to account for electron-transfer dissociation and electron-capture dissociation. The simplest picture to account for all of the observations recognizes that several mechanisms can contribute to the observed products. Furthermore, the identity of the anionic reagent and the positions of the charge sites can affect the relative contributions of the competing mechanisms.  相似文献   

14.
Fischer carbene complexes 1-7 are not ionized under standard electrospray ionization (ESI) conditions. We report here that unsaturated chromium and tungsten (Fischer) carbene complexes can be ionized in an electrospray ion source in the presence of electron-donor compounds such as hydroquinone (HQ) or tetrathiafulvalene (TTF). The addition of these compounds, which seem to act as electron transfer agents, permits the recording and study of their ESI mass spectra in the negative mode of detection. Both chromium and tungsten(0) carbene complexes undergo in the first fragmentation stage a double simultaneous decarbonylation process.  相似文献   

15.
A new and generally applicable synthetic path for the preparation of heteroditopic bis-macrocycles using tri-N-protected tetraazacycloalkanes as building blocks and bromoacetyl bromide as bridging reagent is described. In the first step, bromoacetyl bromide is used as acylating agent for one of the macrocycles, whereas in the second step it is used as alkylating agent for the second macrocycle, thus giving protected bis-macrocyclic amides (e.g. 6 ). After reduction of the amide moiety and deprotection, bis-azamacrocycles with an ethylene bridge are obtained (e.g. 8 ). The corresponding homoditopic bis-macrocycles 16 and 17 are also prepared for comparison purpose. Spectrophotometric studies indicate that bis-macrocycle 8 , which consists of a 12- and a 14-membered ring, binds two metal ions with equal affinity, whereas compound 13 , in which an unsubstituted (cyclam) and a trimethyl-substituted tetraazacyclotetradecane unit (Me3cyclam) are bridged, shows selective metal-ion binding. The first metal ion is always incorporated into the cyclam unit, whereas the second one binds to the Me3cyclam macrocycle. Thus, by sequential addition of two different metal ions, heterobinuclear complexes can easily be prepared. The electrochemistry of the binuclear Ni2+ complexes, studied by CV and DPV, as well as the EPR spectra of the binuclear Cu2+ complexes clearly indicate metal-metal interactions.  相似文献   

16.
9,10-Phenanthrenequinone (PQ) and 1,10-phenanthroline-5,6-dione (PTQ) form 1:1 and 2:1 complexes with metal ions (M (n+)=Sc (3+), Y (3+), Mg (2+), and Ca (2+)) in acetonitrile (MeCN), respectively. The binding constants of PQ--M (n+) complexes vary depending on either the Lewis acidity or ion radius of metal ions. The one-electron reduced species (PTQ(-)) forms 1:1 complexes with M (n+), and PQ(-) also forms 1:1 complexes with Sc(3+), Mg(2+), and Ca(2+), whereas PQ(-) forms 1:2 complexes with Y(3+) and La(3+), as indicated by electron spin resonance (ESR) measurements. On the other hand, semiquinone radical anions (Q(-) and NQ(-)) derived from p-benzoquinone (Q) and 1,4-naphthoquinone (NQ) form Sc(3+)-bridged pi-dimer radical anion complexes, Q(-)--(Sc(3+))(n)--Q and NQ(-)--(Sc(3+))(n)-NQ (n=2 and 3), respectively. The one-electron reduction potentials of quinones (PQ, PTQ, and Q) are largely positively shifted in the presence of M (n+). The rate constant of electron transfer from CoTPP (TPP(2-)=dianion of tetraphenylporphyrin) to PQ increases with increasing the concentration of Sc(3+) to reach a constant value, when all PQ molecules form the 1:1 complex with Sc(3+). Rates of electron transfer from 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to PTQ are also accelerated significantly by the presence of Sc(3+), Y(3+), and Mg(2+), exhibiting a first-order dependence with respect to concentrations of metal ions. In contrast to the case of o-quinones, unusually high kinetic orders are observed for rates of Sc(3+)-promoted electron transfer from tris(2-phenylpyridine)iridium(III) [Ir(ppy)(3)] to p-quinones (Q): second-order dependence on concentration of Q, and second- and third-order dependence on concentration of Sc(3+) due to formation of highly ordered radical anion complexes, Q()--(Sc(3+))(n)--Q (n=2 and 3).  相似文献   

17.
We describe the synthesis of cyclam metal complexes derivatized with amino acids or a tripeptide using a copper(I)-catalyzed Huisgen "click" reaction. The linker triazole formed during the synthesis plays an active coordinating role in the complexes. The reaction conditions do not racemize the amino acid stereocenters. However, a methylene group adjacent to the triazole is susceptible to H/D exchange under ambient conditions, an observation which has potentially important implications for structures involving stereocenters adjacent to triazoles in click-derived structures. The successful incorporation of several amino acids is described, including reactive tryptophan and cysteine side chains. All complexes are formed rapidly upon introduction of the relevant metal salt, including synthetically convenient cases where trifluoroacetate salts of cyclam derivatives are used directly in the metalation. None of the metal complexes displayed any cytotoxicity to mammalian cells, suggesting that the attachment of such complexes to amino acids and peptides does not induce toxicity, further supporting their potential suitability for labeling/imaging studies. One Cu(II)-cyclam-triazole-cysteine disulfide complex displayed moderate activity against MCF-10A breast nontumorigenic epithelial cells.  相似文献   

18.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

19.
Gold(III) porphyrins of the type (P-R)AuPF(6), where P = 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin and R is equal to H (1), NO(2) (2), or NH(2) (3) which is substituted at one of the eight beta-pyrrolic positions of the macrocycle, were investigated as to their electrochemistry and spectroelectrochemistry in nonaqueous media. Each compound undergoes three reductions, the first of which involves the central metal ion to give a Au(II) porphyrin or a Au(III) porphyrin pi-anion radical depending upon the nature of the porphyrin ring substituent. A similar metal-centered reduction also occurs for compounds 1, 3, and Au(III) quinoxalinoporphyrin, (PQ)AuPF(6) (4), where PQ = 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)quinoxalino[2,3-b]porphyrin, and these results on the three Au(III) porphyrins overturn the long held assumption that reductions of such complexes only occur at the macrocycle. In contrast, when a NO(2) group is introduced on the porphyrin ring to give (P-NO(2))AuPF(6) (2), the site of electron transfer is changed from the gold metal to the macrocycle to give a porphyrin pi-anion radical in the first reduction step. This change in the site of electron transfer was examined by electrochemistry combined with thin-layer UV-vis spectroelectrochemistry and ESR spectroscopy of the singly reduced compound produced by chemical reduction. The reorganization energy (lambda) of the metal-centered electron transfer reduction for (P-H)AuPF(6) (1) in benzonitrile was determined as lambda = 1.23 eV by analyzing the rates of photoinduced electron transfer from the triplet excited states of an organic electron donor to 1 in light of the Marcus theory of electron transfer. The lambda value of the metal-centered electron transfer of gold porphyrin (1) is significantly larger than lambda values of ligand-centered electron transfer reactions of metalloporphyrins.  相似文献   

20.
The mass spectra of the title compounds have been determined and special attention has been given to metastable transitions and ion composition assignments. The interpretation of the mass spectra of N,N'-ethylenebis(5,5,5-trifluoro-4-oxopentan-2-imine) and its metal complexes is relatively straightforward. Bond breaking α and β (with H transfers) to nitrogen in the ethylenediamine portion of the molecule overwhemingly dominates the spectra. Changing the diamine bridge adds new features to the spectra in both expected and unexpected ways. Ligand fragmentation changes little when complexed to nickel as compared to hydrogen. Chelation of Cu(II) on the other hand leads to new fragmentation channels which increase in importance as electron availability in the diamine bridge increases. These new reactions are attributed to a reduction of the copper centre in the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号