首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study theoretically the effect of impurity scattering in f-wave (or E2u) superconductors. The quasi-particle density of states of f-wave superconductor is very similar to the one for d-wave superconductor as in hole-doped high T c cuprates. Also in spite of anisotropy in Δ( ), both the reduced superfluid density and the reduced electronic thermal conductivity is completely isotropic. Received 11 October 2000  相似文献   

2.
The anomalous proximity effect between a d-wave superconductor and a thin disordered normal layer is studied theoretically in the framework of Eilenberger equations. It is shown that disorder of the quasiparticle reflection from this thin layer leads to the formation of an s-wave component localized near the boundary. The angular and spatial structure of the pair potential near the interface is studied. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 7, 478–483 (10 April 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

3.
We present mean-field calculations for the in-plane optical conductivity, the superfluid density, and the electronic Raman susceptibility in quasi two-dimensional systems possessing a ground state with two competing order parameters: d-wave density wave (dDW) and d-wave superconductor (dSC). In the coexisting dDW+dSC phase we calculate the frequency dependence of these correlation functions in the presence of impurity scattering in the unitary limit, relevant to zinc-doped cuprate superconductors.  相似文献   

4.
A theoretical study of the fluctuation conductivity above Tc (paraconductivity) is reported for a d-wave superconductor with resonant scattering impurities. A d-wave system is modeled by tight-binding electrons in the two-dimensional squared lattice, and the impurity scattering is treated in the T-matrix approximation in a unitary limit. In calculating the Aslamazov–Larkin (AL) and the Maki–Thompson (MT) terms, we also consider effects of a short-wavelength cutoff in the fluctuation spectrum. The d-wave character in the AL and MT terms manifests itself to renormalization effects on the fluctuation amplitude and reduced temperature, whereas an anomalous-MT term is absent. The present calculations can describe fairly well experiments on the paraconductivity in zinc-doped cuprate superconductors provided that effects of a total-energy cutoff are taken into account.  相似文献   

5.
Remarkable anisotropic structures have been recently observed in the order parameter of the underdoped superconductor Bi2Sr2CaCu2O . Such findings are strongly suggestive of deviations from a simple d x2 - y2 -wave picture of high- superconductivity, i.e. . In particular, flatter nodes in are observed along the directions in -space, than within this simple model for a d-wave gap. We argue that nonlinear corrections in the -dependence of near the nodes introduce new energy scales, which would lead to deviations in the predicted power-law asymptotic behaviour of several measurable quantities, at low or intermediate temperatures. We evaluate such deviations, either analytically or numerically, within the interlayer pair-tunneling model, and within yet another phenomenological model for a d-wave order parameter. We find that such deviations are expected to be of different sign in the two cases. Moreover, the doping dependence of the flatness of the gap near the nodes is also attributable to Fermi surface effects, in addition to possible screening effects modifying the in-plane pairing kernel, as recently proposed. Received 19 November 1999  相似文献   

6.
L. A. Openov 《JETP Letters》1997,66(10):661-667
The combined effect of nonmagnetic and magnetic defects and impurities on the critical temperatures of superconductors with different anisotropies of the gap is studied theoretically within the weak coupling limit of the BCS model. An expression is derived which relates the critical temperature to the relaxation rates of charge carriers on non-magnetic and magnetic scatterers and to the coefficient of anisotropy of the superconducting order parameter on the Fermi surface. The particular cases of d-wave, (s+d)-wave, and anisotropic s-wave superconductors are briefly discussed. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 10, 627–632 (25 November 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

7.
This paper reports on an investigation of transient photoimpedance response to radiation, in other words, real-time variations of the impedance induced by femtosecond optical pulses in superconducting films transferred to the mixed state by an external magnetic field applied parallel to the c-axis. When the films were in a state characterized by the absence of dc resistivity, the response amplitude increased with the magnetic field faster than expected owing to the contribution of magnetic vortices to the impedance of a superconductor with s-wave pairing of electrons. It turned out that the effect is due to a growth in the effective density of quasiparticle states in the mixed state of a d-wave superconductor. In the absence of magnetic field, however, the response amplitude was higher at lower temperatures, which contradicts the predictions of both models. Possible reasons for this feature in the response as a function of temperature are discussed. Zh. éksp. Teor. Fiz. 116, 1035–1047 (September 1999)  相似文献   

8.
Based upon the tight-binding formalism a model of a high-Tc superconductor with isotropic and anisotropic attractive interactions is considered analytically. Symmetry facets of the group C4v are included within a method of successive transformations of the reciprocal space. Complete sets of basis functions of C4v irreducible representations are given. Plausible spin-singlet and spin-triplet superconducting states are classified with regard to the chosen basis functions. It is displayed that pairing interaction coefficients and the dispersion relation, which can be characterized by the parameter η= 2t1/t0, have a diverse and mutually competing influence on the value of the transition temperature. It is also shown that in the case of a nearly half-filled conduction band and an anisotropic pairing interaction the spin-singlet d-wave symmetry superconducting state is realized for small values of the parameter η, whereas in the opposite limit, for sufficiently large values, the spin-triplet p-wave symmetry superconducting state has to be formed. This result cannot be obtained within the Van Hove scenario or BCS-type approaches, where the p-wave symmetry superconducting state absolutely dominates. The specific heat jump and the isotope shift as functions of the parameter η are assessed and discussed for the d-wave symmetry singlet and the p-wave symmetry triplet states.  相似文献   

9.
10.
G. E. Volovik 《JETP Letters》1997,65(2):217-223
Vortex mass in Fermi superfluids and superconductors and its influence on quantum tunneling of vortices are discussed. The vortex mass is essentially enhanced due to the fermion zero modes in the core of the vortex: the bound states of the Bogoliubov quasiparticles localized in the core. These bound states form the normal component, which is nonzero even in the low-temperature limit. In the collisionless regime ω 0 τ≫1 the normal component trapped by the vortex is unbound from the normal component in a bulk superfluid/superconductor and adds to the inertial mass of the moving vortex. In a d-wave superconductor the vortex mass has an additional factor of (B c2/B)1/2 due to the gap nodes. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 2, 201–206 (25 January 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

11.
G. E. Volovik 《JETP Letters》1997,65(6):491-496
In d-wave superconductors the electronic entropy associated with an isolated vortex diverges logarithmically with the size of the system even at low temperatures. In the vortex array the entropy per vortex per layer, S V , is much larger than k B and depends on the distribution of the velocity field v s around the vortex. If there is a first-order transition upon a change of the velocity distribution, then there will be a big entropy jump ΔS V k B at the transition. This entropy jump comes from the electronic degrees of freedom on the vortex background, which is modified by the vortex transition. This can explain the big jump in the entropy observed in the so-called vortex-melting transition [A. Junod, M. Roulin, J-Y. Genoud et al., Physica C, to be published], in which the vortex array and thus the velocity field are redistributed. The possibility of the Berezinskii-Kosterlitz-Thouless transition in the 3-dimensional d-wave superconductor due to the fermionic bound states in the vortex background is discussed. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 6, 465–469 (25 March 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

12.
We solve a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation, study the Zeeman effects on the d-wave superconducting gap and thermodynamic potential. The Josephson currents in the d-wave superconductor (S)/insulating layer (I)/d-wave S junction are calculated as a function of the temperature, exchange field, and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss. It is found that the Josephson critical currents in d-wave S/d-wave S junction depend to a great extent on the relative orientation of the effective exchange field of the two S electrodes, and the crystal orientation of the d-wave S. The exchange field can under certain conditions enhance the Josephson critical current in a d-wave S/I/d-wave S junction.  相似文献   

13.
G. E. Volovik 《JETP Letters》1999,70(9):609-614
The energy levels of fermions bound to the vortex core are considered for the general case of chiral superconductors. There are two classes of chiral superconductivity: in the class I superconducting state the axisymmetric singly quantized vortex has the same energy spectrum of bound states as in an s-wave superconductor: E=(n+1/2)ω0, with integral n. In class II the corresponding spectrum is E=nω0 and thus contains a state with exactly zero energy. The effect of a single impurity on the spectrum of bound states is also considered. For class I the spectrum acquires the doubled period ΔE=2ω0 and consists of two equidistant sets of levels, in accordance with A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 57, 5457 (1998). For the class II states the spectrum is not influenced by a single impurity if the same approximation is applied. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 9, 601–606 (10 November 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

14.
We have performed numerical calculations for low-lying excitations induced by a single non-magnetic impurity in a d-wave superconductor on the basis of two different frameworks. One is the Bogoliubov–de Gennes theory in real coordinates, while the other is the Born approximation in wave-number coordinates. This paper shows that these results for low-lying excitations are identical by using Fourier transformations.  相似文献   

15.
The role of anisotropy of the coupling constant in the influence of nonmagnetic impurities on the behavior of the superconducting transition temperature T c is investigated in the high-temperature superconductor (HTSC) model, where high values of T c result from an increase in the density of states near the Fermi surface. It is shown that this model is more sensitive to impurities than the BCS model; Anderson compensation does not occur in the HTSC model, even for identical distributions of the densities of states in the superconducting and impurity channels, and the impurity contributions are no longer linear with respect to the impurity concentration in the vicinity of T c. Anisotropy of the superconducting gap Δ and the possibility of its disappearance at certain points on the Fermi surface due to various types of pairing are manifested in the stability of the superconducting phase against the influence of impurities. Fiz. Tverd. Tela (St. Petersburg) 39, 1940–1942 (November 1997)  相似文献   

16.
A theoretical study is reported of the vibrations associated with a Ni3+ impurity charged with respect to the ZnO lattice. The calculations were made by a recursive method in terms of the shell model for vibrations with different symmetries. The vibronic structure observed in the spectra of d-d intracenter transitions in the Ni3+ impurity has been interpreted using model calculations. Fiz. Tverd. Tela (St. Petersburg) 41, 618–622 (April 1999)  相似文献   

17.
We propose a simple model of the electron spectrum of a two-dimensional system with hot sections on the Fermi surface that significantly transforms the spectral density (pseudogap) in these sections. Using this model, we set up a Ginzburg-Landau expansion for s and d type Cooper pairing and analyze the effect of the pseudogap in the electron spectrum on the main properties of a superconductor. Zh. éksp. Teor. Fiz. 115, 632–648 (February 1999)  相似文献   

18.
A model of quasi-two-dimensional d-wave superconductor, with strong nesting properties of the Fermi surface is considered. The orbital effect of a moderate magnetic field applied perpendicularly to the conducting planes is studied in the mean field approximation. It is shown that the field can induce a time reversal symmetry breaking SDW order coexisting with the superconducting order and can open a gap over the whole Fermi surface. The anomalies recently observed in the heat conductivity in might be ascribed to this effect. Received 7 May 1999 and Received in final form 13 August 1999  相似文献   

19.
We extend the analysis of the renormalization group flow in the two-dimensional Hubbard model close to half-filling using the recently developed temperature flow formalism. We investigate the interplay of d-density wave and Fermi surface deformation tendencies with those towards d-wave pairing and antiferromagnetism. For a ratio of next nearest to nearest neighbor hoppings, t'/t = - 0.25, and band fillings where the Fermi surface is inside the Umklapp surface, only the d-pairing susceptibility diverges at low temperatures. When the Fermi surface intersects the Umklapp surface close to the saddle points, d-wave pairing, d-density wave, antiferromagnetic and, to a weaker extent, d-wave Fermi surface deformation susceptibilities grow together when the interactions flow to strong coupling. We interpret these findings as indications for a non-trivial strongly coupled phase with short-ranged superconducting and antiferromagnetic correlations, in close analogy with the spin liquid ground state in the well-understood two-leg Hubbard ladder. Received 23 January 2002  相似文献   

20.
The phase diagram, nature of the normal state pseudogap, type of the Fermi surface, and behavior of the superconducting gap in various cuprates are discussed in terms of a correlated state with valence bonds. The variational correlated state, which is a band analogue of the Anderson (RVB) states, is constructed using local unitary transformations. Formation of valence bonds causes attraction between holes in the d-channel and corresponding superconductivity compatible with antiferromagnetic spin order. Our calculations indicate that there is a fairly wide range of doping with antiferromagnetic order in isolated CuO2 planes. The shape of the Fermi surface and phase transition curve are sensitive to the value and sign of the hopping interaction t′ between diagonal neighboring sites. In underdoped samples, the dielectrization of various sections of the Fermi boundary, depending on the sign of t′, gives rise to a pseudogap detected in photoemission spectra for various quasimomentum directions. In particular, in bismuth-and yttrium-based ceramics (t′>0), the transition from the normal state of overdoped samples to the pseudogap state of underdoped samples corresponds to the onset of dielectrization on the Brillouin zone boundary near k=(0,π) and transition from “large” to “small” Fermi surfaces. The hypothesis about s-wave superconductivity of La-and Nd-based ceramics has been revised: a situation is predicted when, notwithstanding the d-wave symmetry of the superconducting order parameter, the excitation energy on the Fermi surface does not vanish at all points of the phase space owing to the dielectrization of the Fermi boundary at k x=± k y. The model with orthorhombic distortions and two peaks on the curve of T c versus doping is discussed in connection with experimental data for the yttrium-based ceramic. Zh. éksp. Teor. Fiz. 115, 649–674 (February 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号