首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of oxygen uptake in the cumyl peroxide-initiated oxidation of cyclohexanol (373 K, o-dichlorobenzene) is studied. The parameters of the oxidizability of k p (2k t )?0.5 (which depend on [RH]) and the rate constants of the bi- and trimolecular reactions of chain initiation (k 0 = 1.25 × 10?8 L/(mol s) and k0 = 2.5 × 10?9 L2/(mol2 s), respectively) are determined by solving the inverse kinetic problem. It is demonstrated that the quadratic-law recombination of peroxyl radicals during cyclohexanol oxidation also occurs without chain termination. The recombination rates of peroxyl radicals with and without chain termination (k′/k t ) are found to grow with increasing [RH], reaching their maxima at [RH] = 1.0 mol/L, and to diminish subsequently. We conclude that this can be attributed to changes in the ratio between the propagating peroxyl radicals (hydroperoxyl and 1-hydroxycyclohexylperoxyl) in the reaction medium.  相似文献   

2.
The kinetics of the initiated oxidation of acrylic acid and methyl methacrylate in the liquid phase were studied volumetrically by measuring oxygen uptake during the reaction. Both processes proceed via the chain mechanism with quadratic-law chain termination. The oxidation rate is described by the equation w = k 2/(2k 6)1/2[monomer]w i 1/2 , where w i is the initiation rate and k 2 and k 6 are the rate constants of chain propagation and termination. The parameter k 2/(2k 6)1/2 is 7.58 × 10?4 (l mol?1 s?1)1/2 for acrylic acid oxidation and 2.09 × 10?3 (l mol?1 s?1)1/2 for the oxidation of methyl methacrylate (T = 333 K). For the oxidation of acrylic acid, k 2 = 2.84 l mol?1 s?1 (T = 333 K) and the activation energy is E 2 = 54.5 kJ/mol; for methyl methacrylate oxidation, k 2 = 2.96 l mol?1 s?1 (T = 333 K) and E 2 = 54.4 kJ/mol. The enthalpies of the reactions of RO 2 ? with acrylic acid and methyl methacrylate were calculated, and their activation energies were determined by the intersecting parabolas method. The contribution from the polar interaction to the activation energy was determined by comparing experimental and calculated E 2 values: ΔE μ = 5.7 kJ/mol for the reaction of RO 2 ? with acrylic acid and ΔE μ = 0.9 kJ/mol for the reaction of RO 2 ? with methyl methacrylate. Experiments on the spontaneous oxidation of acrylic acid provided an estimate of the rate of chain initiation via the reaction of oxygen with the monomer: w i,0 = (3.51 ± 0.85) × 10?11 mol l?1 s?1 (T = 333 K).  相似文献   

3.
The kinetics and stoichiometry of the formation of active oxygen (AO) in the acidic decomposition of trimeric (TATP) and dimeric (DADP) cyclic acetone peroxides are considered. Fe(III) produced as a result of Fe(II) oxidation with active oxygen has been determined using rhodanide procedure. The kinetics of the formation of active oxygen is described by a first order equation. The effective rate constant of TATP decomposition depends on the Hammett acidity function H 0: log k eff = ?H 0 ? 2.6 (k eff is in s?1). Consequently, the decomposition rate of TATP is limited by protonation. In the HCl and H2SO4 concentration range from 0.006 to 2.9 mol/L, the decomposition of DADP occurs with k eff = 0.0010 ± 0003 s?1 at a Fe(II) concentration of 3.5 mmol/L and k eff depends linearly on the concentration of Fe(II).  相似文献   

4.
Gas-phase reactions typical of the Earth’s atmosphere have been studied for a number of partially fluorinated alcohols (PFAs). The rate constants of the reactions of CF3CH2OH, CH2FCH2OH, and CHF2CH2OH with fluorine atoms have been determined by the relative measurement method. The rate constant for CF3CH2OH has been measured in the temperature range 258–358 K (k = (3.4 ± 2.0) × 1013exp(?E/RT) cm3 mol?1 s?1, where E = ?(1.5 ± 1.3) kJ/mol). The rate constants for CH2FCH2OH and CHF2CH2OH have been determined at room temperature to be (8.3 ± 2.9) × 1013 (T = 295 K) and (6.4 ± 0.6) × 1013 (T = 296 K) cm3 mol?1 s?1, respectively. The rate constants of the reactions between dioxygen and primary radicals resulting from PFA + F reactions have been determined by the relative measurement method. The reaction between O2 and the radicals of the general formula C2H2F3O (CF3CH2? and CF3?HOH) have been investigated in the temperature range 258–358 K to obtain k = (3.8 ± 2.0) × 108exp(?E/RT) cm3 mol?1 s?1, where E = ?(10.2 ± 1.5) kJ/mol. For the reaction between O2 and the radicals of the general formula C2H4FO (? HFCH2O, CH2F?HOH, and CH2FCH2?) at T = 258–358 K, k = (1.3 ± 0.6) × 1011exp(?E/RT) cm3 mol?1 s?1, where E = ?(5.3 ± 1.4) kJ/mol. The rate constant of the reaction between O2 and the radicals with the general formula C2H3F2O (?F2CH2O, CHF2?HOH, and CHF2CH2?) at T = 300 K is k = 1.32 × 1011 cm3 mol?1 s?1. For the reaction between NO and the primary radicals with the general formula C2H2F3O (CF3CH2? and CF3?HOH), which result from the reaction CF3CH2OH + F, the rate constant at 298 K is k = 9.7 × 109 cm3 mol?1 s?1. The experiments were carried out in a flow reactor, and the reaction mixture was analyzed mass-spectrometrically. A mechanism based on the results of our studies and on the literature data has been suggested for the atmospheric degradation of PFAs.  相似文献   

5.
The kinetics of OH(ν = 0) and OH(ν = 1) have been followed using pulsed photolysis of H2O or HNO3 to generate hydroxyl radicals, and time-resolved, laser-induced fluorescence to observe the rates of their subsequent removal in the presence of HCl or HBr. The experiments yield the following rate constants (cm3 molecule?1 s?1) at 298 ± 4 K: OH(ν = 0) + HCl: ko = (6.8 ± 0.25) × 10?13; OH(ν = 0) + HBr: ko = (11.2 ± 0.45) × 10?12; OH(ν = 1) + HCl: k1 = (9.7 ± 1.0) × 10?13; OH(gn = 1) + HBr; k1 = (8.1 ± 1.05) × 10?12 For OH(ν = 1), the measurements do not distinguish between loss by reaction and relaxation, and the fact that k1 > ko for HCl is tentatively attributed to relaxation, probably by near-resonant vibrational—vibrational energy transfer. Clearly, neither of these exothermic, low-activation-energy reactions is enhanced to any great extent, if at all, by vibrational excitation of the OH radical.ft]*|Present address: Battelle/Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352, USA.  相似文献   

6.
Kinetic results for the addition of OH? to [Mn(CO)3(η-C6H6)]+ (I) in water (eq. 1, X  OH) obey the expression kobskOH[OH?], and give a kOH value of 290 mol?1 dm3 s?1 at 20.0°C and ionic strength of 0.25 mol dm?3. The analogous reaction of NaCN with I in water fits the two-term expression kobs = kOH[OH?] + kCN[CN?], and leads to a kCN value of 0.8 mol?1 dm3 s?1 at 20.0°C and ionic strength of 0.25 mol dm?3. Interestingly, the related reaction (eq. 1, X  N3) is too rapid to follow by stopped-flow spectrophotometry, indicating the overall rate trend N3? » OH? » CN?. This unusual nucleophilicity order, unexpected on the basis of both basicity and polarizability, is similar to that previously observed for anion addition to free carbonium ions.  相似文献   

7.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

8.
The rates of decay of O(3P) atoms in H2/CO/N2 mixtures in a discharge flow system have been measured, using O + CO chemiluminescence. The mechanism is: O + H2 → OH + H (1), O + OH → O2 + H (2), CO + OH → CO2 + H (3). At 425 K, k2/k3 = 260 ± 20; literature values of k3 combine to yield k2 = (2.65 ± 0.52) × 1010 dm3 mol?1 s?1.  相似文献   

9.
The redox reaction between tris(1,10-phenanthroline)iron(II), [Fe(phen)3]2+, and azido-pentacyanocobaltate(III), [Co(CN)5N3]3? was investigated in three cationic surfactants: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) in the presence of 0.1?M NaCl at 35°C. Second-order rate constant in the absence and presence of surfactant, kw and kψ, respectively, were obtained in the concentration ranges DTAB?=?0???4.667?×?10?4?mol?dm?3, TTAB?=?0–9.364?×?10?5?mol?dm?3, CTAB?=?0???6.220?×?10?5?mol?dm?3. Electron transfer rate was inhibited by the surfactants with premicelllar activity. Inhibition factors, kw/kψ followed the trend CTAB?>?TTAB?>?DTAB with respect to the surfactant concentrations used. The magnitudes of the binding constants obtained suggest significant electrostatic and hydrophobic interactions. Activation parameters ΔH, ΔS, and Ea have larger positive values in the presence of surfactants than in surfactant-free medium. The electron transfer is proposed to proceed via outer-sphere mechanism in the presence of the surfactants.  相似文献   

10.
The reaction of OH with NOCl has been studied using the discharge flow reaction-EPR technique. The absolute rate constant is k1 = (4.3±0.4)× 10?13 cm3 molecule?1 s?1 at 298 K. A mass spectrometric investigation of the products shows that this reaction occurs via two primary steps, OH + NOCl → NO + ClOH(1a) and OH + NOCl → HONO + Cl (1b) with k1a =k1b.  相似文献   

11.
The antiradical activity of fullerene C60 was studied for the oxidation of 1,4-dioxane and styrene initiated by azobisisobutyronitrile and benzoyl peroxide as model reactions. The effective rate constants of the reaction of peroxyl radicals with fullerene C60 (k 7) and the stoichiometric inhibition factor (f eff) were determined in air ( $P_{O_2 }$ = 0.21 atm) and oxygen ( $P_{O_2 }$ = 1.0 atm). The rate of the liquid-phase oxidation of 1,4-dioxane does not depend on $P_{O_2 }$ , and the effective rate constant of inhibition is k 7 = (2.4 ± 0.2) × 104 L mol?1 s?1. Chain termination in the oxidation of styrene occurs when C60 reacts with both the peroxyl radicals (k 7 = (1.2 ± 0.1) × 103 L mol?1 s?1) and alkyl (k 8 = 1.07 × 107 L mol?1 s?1) radicals.  相似文献   

12.
The spectrocoulometric technique reported earlier is applied to verify the mechanism and to evaluate the contributions kBi of the individual bases to the total rate constant k of the hydrolysis of the tris (1,10-phenanthroline) iron(III) complex, Fe (phen)3+3. Both normal and “open-circuit” spectrocoulometric experiments are used. Partial rate constants for four bases in the acetate-buffered solutions are kH2O=(3.4±1.2) × 10?4s?1 (kH2O includes the H2O concentration), kOH=(1.20±0.06)×107 mol?1dm3s?1, kphen=(1.4±0.2) mol?1dm3s?1, kAc=(3.8±0.3)×10?2 mol?1dm3s?1, at 25°C and ionic strength 0.5 mol dm?3. The Fe(phen)3+3 hydrolysis, with (phen)2 (H2O) Fe-O-Fe (H2O) (phen)4+2 formation, is first order with respect to Fe (phen)3+3 and the bases present in the solution. The rate-determining step in the hydrolysis is the entry of a base to the coordinating sphere of the complex, as in the hydrolysis of the analogous 2,2′-bipyridyl complex.  相似文献   

13.
In reply to “Comment on the possible role of reaction H+H2O→H2+OH in the radiolysis of water at high temperatures” (Bartels, 2009 Comment on the possible role of the reaction H+H2O→H2+OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 78, 191–194) we present an alternative thermodynamic estimation of the reaction rate constant k. Based on the non-symmetric standard state convention we have calculated that the Gibbs energy of reaction ΔrG=57.26 kJ mol?1 and the reaction rate constant k=7.23×10?5 M?1 s?1 at ambient temperature. Re-analysis of the thermodynamic estimation (Bartels, 2009 Comment on the possible role of the reaction H+H2O→H2+OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 78, 191–194) showed that the upper limit for the rate constant at 573 K is k=1.75×104 M?1 s?1 compared to the value predicted by the diffusion-kinetic modelling (3.18±1.25)×104 M?1 s?1 (Swiatla-Wojcik, D., Buxton, G.V., 2005. On the possible role of the reaction H+H2O→H2+OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 74(3–4), 210–219). The presented thermodynamic evaluation of k(573) is based on the assumption that k can be calculated from ΔrG and the rate constant of the reverse reaction which, as discussed, are both uncertain at high temperatures.  相似文献   

14.
Phenylhydrazine (R) quantitatively reduces [Fe2(μ-O)(phen)4(H2O)2]4+ (1) (phen?=?1,10-phenanthroline) and its conjugate base [Fe2(μ-O)(phen)4(H2O)(OH)]3+ (2) to [Fe(phen)3]2+ in presence of excess 1,10-phenanthroline in the pH range 4.12–5.55. Oxidation products of phenylhydrazine are dinitrogen and phenol. The reaction proceeds through two parallel paths: 1?+?R?→?products (k 1), 2?+?R?→?products (k 2); neither RH+ nor the doubly deprotonated conjugate base of the oxidant, [Fe2(μ-O)(phen)4(OH)2]2+ (3) is kinetically reactive though both are present in the reaction media. At 25.0°C, I?=?1.0?M (NaNO3), the rate constants are k 1?=?425?±?10?M?1?s?1 and k 2?=?103?±?5?M?1?s?1. An inner-sphere, one-electron, rate-limiting step is proposed.  相似文献   

15.
A theoretical study of a two-step reversible electrochemical reaction OPR is made in thin layer linear potential sweep voltammetry when O, P and R can undergo one or several of the following irreversible chemical reactions: P→Z, R→Z, 2P→Z, 2R→Z, O+P→Z, P+R→Z and O+R→Z. The equations of the reduction and oxidation peaks are calculated. Criteria permitting the determination of the reaction involved are given. Values of the disproportionation constant K larger than 0.05 can be calculated from the experimental curves, and values of the rate constant of the chemical reaction k when 10?3<k (s?1)<1 for a first order reaction and 1<k (mol l?1 s?1)<104 for a second order reaction.  相似文献   

16.
Bifunctional tridentate Schiff bases such as, $$\begin{gathered} HOC_6 H_4 C(CH_3 ) : NCH_2 CH_2 OH, \hfill \\ HOC_6 H_4 C(CH_3 ) : NCH_2 CH_2 (OH)CH_3 , \hfill \\ HOC_6 H_4 C(H) : NCH_2 CH_2 OH \hfill \\ \end{gathered} $$ and HOC6H4C(H)∶NCH2CH(OH)CH3 react with La(III), Pr(III) and Nd(III) isopropoxides to 1∶1 and 2∶3 derivatives of the type,Ln(O?i-C3H7)(OC6H4C[R]∶NR′O) andLn 2(OC6H4C[R]∶ NR′O)3 [where,Ln=La(III), Pr(III) or Nd(III); R=CH3 or H and R′=CH2?CH2 or CH2CHCH3] in dry benzene. The labile nature of the isopropoxy groups in the 1∶1 derivatives has been shown by exchange reactions with an excess oft-butyl alcohol leading to the formation ofLn(O?t-C4H9)(OC6H4C[R]∶NR′O); (where R=CH3 and R′=CH2CHCH3) type derivatives in almost quantitative yield. The IR spectra of the resulting derivatives have been recorded in the range of 4000–400 cm?1, ν C=N frequency bands appear at ≈ 1620 cm?1 and almost no change has been noted in their positions on complexation. Some new peaks are, however, observed in the range of 700–600 cm?1 and these may be ascribed to the ring deformation coupled with both theLn?O stretching and C?CH3 stretching modes.  相似文献   

17.
The rate constant for the reaction between OH and vibrationally excited H2, OH + H2(ν = 1)→H2O + H, has been measured directly at 298 K. k01 is found to be (7.5±3)×10?13 cm3/molecules, corresponding to a vibrational rate enhancement of k01/k00 = (1.2 ± 0.4) × 102.  相似文献   

18.
The kinetics of the emulsion polymerization of methyl methacrylate at 50°C have been studied in seeded systems using both chemical initiation and γ-radiolysis initiation. Both steady-state rates and (for γ-radiolysis) the relaxation from the steady state were observed. The average number of free radicals per particle was quite high (e.g., ~0.7 for 10?3 mol dm?3 S2O28 initiator). The data are quantitatively interpreted using a generalized Smith–Ewart–Harkins model, allowing for free radical entry, exit, biomolecular termination within the latex particles, and aqueous phase hetero-termination and re-entry. From this treatment, there results (i) the dependence of the termination rate coefficient (kt) on the weight fraction of polymer (wp), (ii) lower bounds for the dependence of the entry rate coefficient on initiator concentration, and (iii) the conclusion that most exited free radicals undergo subsequent re-entry into particles rather than hetero-termination. The results for kt(wp) are consistent with diffusion control at temperatures below the glass transition point. Comparisons are presented of the behavior of methyl methacrylate, butyl methacrylate, and styrene in emulsion polymerization systems.  相似文献   

19.
The kinetics of oxidation of the chromium(III) complexes, [Cr(Ino)(H2O)5]3+ and [Cr(Ino)(Gly)(H2O)3]2+ (Ino?=?Inosine and Gly?=?Glycine) involving a ligands of biological significance by N-bromosuccinimide (NBS) in aqueous solution to chromium(VI) have been studied spectrophotometrically over the 25–45°C range. The reaction is first order with respect to both [NBS] and [Cr], and increases with pH over the 6.64–7.73 range in both cases. The experimental rate law is consistent with a mechanism in which the hydroxy complexes [Cr(Ino)(H2O)4(OH)]2+ and [Cr(Ino)(Gly)(H2O)2(OH)]+ are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant, k 1, for the oxidation of the [Cr(Ino)(H2O)5]3+ (6.90?×?10?4?s?1) is lower than the value of k 2 (9.66?×?10?2?s?1) for the oxidation of [Cr(Ino)(Gly)(H2O)2]2+ at 35°C and I?=?0.2?mol?dm?3. The activation parameters have been calculated. Electron transfer apparently takes place via an inner-sphere mechanism.  相似文献   

20.
Protonated amino acids and derivatives RCH(NH2)C(+O)X · H+ (X = OH, NH2, OCH3) do not form stable acylium ions on loss of HX, but rather the acylium ion eliminates CO to form the immonium ion RCH = NH 2 + . By contrast, protonated dipeptide derivatives H2NCH(R)C(+O)NHCH(R′)C(+O)X · H+ [X = OH, OCH3, NH2, NHCH(R″)COOH] form stable B2 ions by elimination of HX. These B2 ions fragment on the metastable ion time scale by elimination of CO with substantial kinetic energy release (T 1/2 = 0.3–0.5 eV). Similarly, protonated N-acetyl amino acid derivatives CH3C(+O)NHCH(R′)C(+O)X · H+ [X = OH, OCH3, NH2, NHCH(R″)COOH] form stable B ions by loss of HX. These B ions also fragment unimolecularly by loss of CO with T 1/2 values of ~ 0.5 eV. These large kinetic energy releases indicate that a stable configuration of the B ions fragments by way of activation to a reacting configuration that is higher in energy than the products, and some of the fragmentation exothermicity of the final step is partitioned into kinetic energy of the separating fragments. We conclude that the stable configuration is a protonated oxazolone, which is formed by interaction of the developing charge (as HX is lost) with the N-terminus carbonyl group and that the reacting configuration is the acyclic acylium ion. This conclusion is supported by the similar fragmentation behavior of protonated 2-phenyl-5-oxazolone and the B ion derived by loss of H-Gly-OH from protonated C6H5C(+O)-Gly-Gly-OH. In addition, ab initio calculations on the simplest B ion, nominally HC(+O)NHCH2CO+, show that the lowest energy structure is the protonated oxazolone. The acyclic acylium isomer is 1.49 eV higher in energy than the protonated oxazolone and 0.88 eV higher in energy than the fragmentation products, HC(+O)N+H = CH2 + CO, which is consistent with the kinetic energy releases measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号