首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previously proposed field theory is quantized. The theory contains a parameter having the character of an elementary length. We fix the value of this parameter by scaling it to the weak interaction strength. It is shown that this way negative metric states are confined to a region of the order 10?15 cm. The resulting quantum theory of interacting fields is Lorentz and gauge invariant, has a unitaryS-matrix, and is convergent.  相似文献   

2.
The general formalism of relativistic Schrödinger theory (RST) is specialized to a scalar two-particle system with electromagnetic interactions (scalar helium atom). The set of dynamically allowed field configurations splits up into positive and negative mixtures and pure states. The static and spherically symmetric solutions are constructed by means of first-order perturbation theory for the case of an attractive Coulomb potential. The corresponding energy levels for the positive and negative mixtures resemble the emergence of ortho and para states in the conventional quantum theory. The associated energy eigenvalues predicted by the RST seem to undergo a certain kind of mixture degeneracy as the RST analog of the conventional exchange degeneracy. The charge densities of the positive mixtures assimilate, whereas the densities of the negative mixtures recede from one another. Thus, positive (negative) mixtures strongly resemble the bosonic (fermionic) matter of the conventional theory when the Pauli principle is applied.  相似文献   

3.
Via the proper-time eigenstates (event states) instead of the proper-mass eigenstates (particle states), free-motion time-of-arrival theory for massive spin-1/2 particles is developed at the level of quantum field theory. The approach is based on a position-momentum dual formalism. Within the framework of field quantization, the total time-of-arrival is the sum of the single event-of-arrival contributions, and contains zero-point quantum fluctuations because the clocks under consideration follow the laws of quantum mechanics.  相似文献   

4.
We study a Schrödinger equation involving a Hamiltonian that is a second-order differential operator, describes free spin-1/2 particles with both energy signs and a definite mass, and depends on a parameterG. One obtains the usual Dirac Hamiltonian by settingGi, but for real values ofG the one-particle theory developed here possesses an indefinite metric, so negative energy states have negative normalization. Although the new equation is not manifestly covariant, it is demonstrated that it can be made invariant under proper orthochronous Poincaré transformations; it is also invariant under the CPT transformation and charge conjugation, but not, as we interpret it, under space inversion.Supported in part by the U.S. Energy Research and Development Administration.  相似文献   

5.
We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter J a = J b, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase.  相似文献   

6.
We consider quantum field theoretical models inn dimensional space-time given by interaction densities which are bounded functions of an ultraviolet cut-off boson field. Using methods of euclidean Markov field theory and of classical statistical mechanics, we construct the infinite volume imaginary and real time Wightman functions as limits of the corresponding quantities for the space cut-off models. In the physical Hilbert space, the space-time translations are represented by strongly continuous unitary groups and the generator of time translationsH is positive and has a unique, simple lowest eigenvalue zero, with eigenvector , which is the unique state invariant under space-time translations. The imaginary time Wightman functions and the infinite volume vacuum energy density are given as analytic functions of the coupling constant. The Wightman functions have cluster properties also with respect to space translations.  相似文献   

7.
A relativistic system of electrically charged fermions and oppositely charged massive scalars with no self-interactions, is argued to have a long-lived collective state with a net charge. The charge is residing near the surface of the spherically-symmetric state, while the interior consists of the condensed scalars, that are neutralized by the fermions. The metastability is achieved by competition of the negative pressure of the scalar condensate, against the positive pressure, mainly due to the fermions. We consider such metanuclei made of helium-4 nuclei and electrons, below nuclear but above atomic densities. Typical metanuclei represent charged balls of the atomic size, colossal mass, electric charge and excess energy. Unlike an ordinary nucleus, the charge of a metanucleus scales proportionately to its radius. The quantum mechanical decay through tunneling, and vacuum instability via pair-creation, are both suppressed for large values of the electric charge. Similar states could also be composed of other charged (pseudo)scalars, such as the pions, scalar supersymmetric partners, or in general, spin-0 states of new physics.  相似文献   

8.
We calculate a topological invariant, whose value would coincide with the Chern number in the case of integer quantum Hall effect, for fractional quantum Hall states. In the case of Abelian fractional quantum Hall states, this invariant is shown to be equal to the trace of the K-matrix. In the case of non-Abelian fractional quantum Hall states, this invariant can be calculated on a case by case basis from the conformal field theory describing these states. This invariant can be used, for example, to distinguish between different fractional Hall states numerically even though, as a single number, it cannot uniquely label distinct states.  相似文献   

9.
The influence of a static external electric field on surface‐enhanced Raman scattering is investigated by calculating the Raman spectra and excited state properties of pyridine–Au20 complex with the density functional theory and time‐dependent density functional theory method. The external electric field with orientation parallel (positive) or antiparallel (negative) to the permanent dipole moment is respectively applied on the complex. This field slightly changes the equilibrium geometry and polarizabilities, which results in shifted vibration frequencies and selectively enhanced Raman intensities. The changes of charge transfer (CT) excited states in response to the electric field are visualized by employing the charge difference densities. Further, the energy of charge transfer transition is tuned by electric field to be resonant or not with the incident light, leading to the Raman intensities are enhanced or not enhanced. At the same time, the intensities of vibration modes are sensitive to the orientation of the field. The positive electric field enhances the totally symmetric ring breathing mode (~1009 cm−1) but suppresses the trigonal ring breathing mode (~1051 cm−1). On the contrary, the mode at 1051 cm−1 is more enhanced than the mode at 1009 cm−1 when the negative electric field is applied on the complex. The Raman spectra could be modulated by tuning the strength and direction of the electric field. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A measure of nonclassicality of quantum states based on the negative values of the Wigner function (WF) of a charge qubit-field system is proposed. It is found that, the negative values of the field WF are very sensitive to any change in dissipation parameter. The dissipation leads to a long-time death for both entanglement and nonclassicality, and also the coherence of the cavity state is lost completely.  相似文献   

11.
We have developed a consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with a short range antiferromagnetic order on the basis of the path integral for spin coherent states. In the framework of our approach we have obtained the response function for the spin fluctuations for all values of the frequency ω and the wave vector k and have calculated the free energy of the system. We have also reproduced the known results for the spin correlation length in the lowest order in 1/N. We have presented the Lagrangian of the theory in a form which is explicitly invariant under rotations and found natural variables in terms of which one can construct a natural perturbation theory. The short wave spin fluctuations are similar to those in the spin wave theory and they are on the order of the smallness parameter 1/2s where s is the spin magnitude. The long-wave spin fluctuations are governed by the nonlinear sigma model and are on the order of the smallness parameter 1/N, where N is the number of field components. We also have shown that the short wave spin fluctuations must be evaluated accurately and the continuum limit in time of the path integral must be performed after the summation over the frequencies ω.  相似文献   

12.
We introduce an exactly solvable SU(2)-invariant spin-1/2 model with exotic spin excitations. With time reversal symmetry (TRS), the ground state is a spin liquid with gapless or gapped spin-1 but fermionic excitations. When TRS is broken, the resulting spin liquid exhibits deconfined vortex excitations which carry spin-1/2 and obey non-Abelian statistics. We show that this SU(2) invariant non-Abelian spin liquid exhibits the spin quantum Hall effect with quantized spin Hall conductivity σ(xy)(s)=?/2π, and that the spin response is effectively described by the SO(3) level-1 Chern-Simons theory at low energy. We further propose that a SU(2) level-2 Chern-Simons theory is the effective field theory describing the topological structure of the non-Abelian SU(2) invariant spin liquid.  相似文献   

13.
A quantum Ising-like spin-1 model characterized by quadrupolar interaction, coupled to an external anisotropic field with both dipole and quadrupole momenta is analyzed. The general phase diagram (including temperature), as well as order parameter, specific heat, and susceptibility are evaluated in the mean-field approximation and exibit a rich structure with transitions of 2° and 1° order and tricritical points. ForT=0 the phase diagram is examined also by a recently formulated improved version of mean-field theory which has the usual mean-field theory as its zero-th order approximation.  相似文献   

14.
对于无限大尺寸两腿自旋1/2的XXZ自旋梯子模型,通过运用基于随机行走的张量网络(TN)算法数值模拟出基态波函数,首次尝试研究自旋梯子模型的约化保真度、普适序参量、纠缠熵等物理观测量,并系统研究基态保真度的三维挤点与二维分叉、约化保真度的分叉、局域序参量、普适序参量、纠缠熵和量子相变之间存在的关联关系.基于张量网络表示的算法在任意随机选择初始状态时,可以得到两腿XXZ量子自旋梯子系统简并的对称破缺基态波函数,该基态波函数是由于Z2对称破缺引起的.本文期望所提供的方法可为进一步研究凝聚态物质中热力学极限下的强关联电子量子晶格自旋梯子系统的量子相变和量子临界现象提供一种更有效的强大的工具.  相似文献   

15.
Yang-Mills' field is generalized to possess a nontrivial scalar part. The most general transformations for such a field under the 3-parameter isotopic gauge transformation is obtained. Using this generalized gauge field, a gauge invariant Lagrangian is constructed within the framework of the quark model. Interactions for spin-1 as well as for spin-0 are generated. As a further application a weak interaction theory mediated by the generalized gauge (boson) field is formulated. The entire weak interactions are generated in two halfs; the hadron-boson interaction is generated according to Yang-Mills' trick using the generalized gauge field and the other half (boson-lepton, etc.) is then generated by making use of the scalar part of the gauge fields according to the conventional pion gauge principle. The effective Lagrangian is then found to be mediated by the effective propagators which fall off as p−2 at high momenta; the unitarity of the theory can thereby be insured. Universality in weaker sense than the usual one is applied to the intermediate bosons; our theory for β-decay then reduces to Cabibbo's at low energy.  相似文献   

16.
It is shown that the large-N limit of quantum chromodynamics in twodimensions is determined by classical equations with boundary conditions. The nonperturbative quantum spectrum of mesonic bound states is obtained from a classical equation with a simple N-dependent boundary condition on the local charge density. The simplicity of the classical correspondence is shown to be directly tied to the simplicity of the space of gauge invariant operators of the theory. Implications for other large-N models are discussed.  相似文献   

17.
In the framework of effective quantum field theory we address the definition of physical quantities characterizing unstable particles. With the aid of a one-loop calculation, we study this issue in terms of the charge and the magnetic moment of a spin-1/2 resonance. By appealing to the invariance of physical observables under field redefinitions we demonstrate that physical properties of unstable particles should be extracted from the residues at complex (double) poles of the corresponding S -matrix.  相似文献   

18.
The proper time is introduced as a parameter into the wave functions of relativistic quantum theory by first quantization of the mass. The classical limit is shown to be given by a recently developed canonical formulation of classical relativistic mechanics. The adjoint spinor is redefined with the help of a sign operator to remove a discrepancy between the classical and quantum actions in the behavior under time inversion. This results in positive energy densities for the Dirac theory. The inclusion of this sign operator into the definition of the probability current then removes negative probabilities from the theory. A five-dimensional formulation with first quantized charge is given.  相似文献   

19.
Electromagnetic fields are quantized in a manifestly covariant way by means of a class of reducible “center-of-mass N-representations” of the algebra of canonical commutation relations (CCR). The four-potential A a (x) transforms in these representations as a Hermitian four-vector field in Minkowski four-position space (without change of gauge), but in momentum space it splits into spin-1 massless photons and two massless scalars. What we call quantum optics is the spin-1 sector of the theory. The scalar fields have physical status similar to that of dark matter (spin-1 and spin-0 particle numbers are separately conserved). There are no negative-norm or zero-norm states. Unitary dynamics is given by the point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations as well as the dynamics are represented unitarily in the Hilbert space corresponding to N four-dimensional oscillators. Vacuum is a Bose-Einstein condensate of the N-oscillator gas and is given by any N-oscillator product state annihilated by all annihilation operators. The form of A a (x) is determined by an analogue of the twistor equation. The same equation guarantees that the set of vacuum states is Poincaré invariant. The formalism is tested on quantum fields produced by pointlike classical sources. Photon statistics is well defined even for pointlike charges, with ultraviolet and infrared regularizations occurring automatically as a consequence of the formalism. The probabilities are not Poissonian but of a Rényi type with α=1−1/N; the Shannon limit N→∞ is an ultraviolet/infrared-regularized Poisson distribution. The average number of photons occurring in Bremsstrahlung splits into two parts: The one due to acceleration, and the one that remains nonvanishing even for inertially moving charges. Classical Maxwell electrodynamics is reconstructed from coherent-state averaged solutions of Heisenberg equations. We show in particular that static pointlike charges polarize vacuum and produce effective charge densities and fields whose form is sensitive to both the choice of representation of CCR and the corresponding vacuum state.  相似文献   

20.
The mixed spin-(1/2, 1) Ising chain with axial and rhombic zero-field splitting parameters in the presence of the longitudinal magnetic field is exactly solved within the framework of decoration-iteration transformation and transfer-matrix method. Our particular emphasis is laid on an investigation of the influence of the rhombic term, which is responsible for an onset of quantum entanglement between two magnetic states Skz=±1 of the spin-1 atoms. It is shown that the rhombic term gradually destroys a classical ferrimagnetic order in the ground state and simultaneously causes diversity in magnetization curves including intermediate plateau regions, regions with a continuous change in the magnetization as well as several unusual field-induced transitions accompanied with magnetization jumps. Another interesting findings concern with an appearance of the round minimum in the temperature dependence of susceptibility times temperature data, the double-peak zero-field specific heat curves and the enhanced magnetocaloric effect. The temperature dependence of the specific heat with three separate maxima may also be detected when driving the system through the axial and rhombic zero-field splitting parameters close enough to a phase boundary between the ferrimagnetic and disordered states and applying sufficiently small longitudinal magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号