首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vortex core dynamics is studied in the Brusselator both near to and far from the Hopf bifurcation line for random and pair initial conditions. Extensive simulations are carried out for a pair of counter-rotating vortices close to the Hopf bifurcation line. Provided the vortices are not so far apart that wave-front annihilation produces strong gradients between their centers, the simulation results compare favorably with theories based on the complex Ginzburg-Landau equation. Far from the Hopf line the vortex core dynamics changes character and phenomena such as periodic motion of the vortex centers arise.  相似文献   

2.
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non-Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscillations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.  相似文献   

3.
A vortex line passes through as many pinning centers as possible on its way from one extremety of the superconductor to the other at the expense of increasing its self-energy. In the framework of the Ginzburg-Landau theory we study the relative growth in length, with respect to the straight line, of a vortex near a zigzag of defects. The defects are insulating pinning spheres that form a three-dimensional cubic array embedded in the superconductor. We determine the depinning transition beyond which the vortex line no longer follows the critical zigzag path of defects.Received: 23 July 2004, Published online: 26 November 2004PACS: 74.80.-g Spatially inhomogeneous structures - 74.25.-q General properties; correlations between physical properties in normal and superconducting states - 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)  相似文献   

4.
Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.  相似文献   

5.
Dynamics of the complex Ginzburg-Landau equation describing networks of diffusively coupled limit-cycle oscillators near the Hopf bifurcation is reviewed. It is shown that the Benjamin-Feir instability destabilizes the uniformly synchronized state and leads to non-uniform pattern dynamics on general networks. Nonlinear dynamics on several network topologies, i.e., local, nonlocal, global, and random networks, are briefly illustrated by numerical simulations.  相似文献   

6.
马少娟 《物理学报》2011,60(1):10502-010502
研究了一类随机van der Pol 系统的Hopf分岔行为.首先根据Hilbert空间的正交展开理论,含有随机参数的van der Pol系统被约化为等价确定性系统,然后利用确定性分岔理论分析了等价系统的Hopf分岔,得出了随机van der Pol 系统的Hopf 分岔临界点,探究了随机参数对系统Hopf分岔的影响.最后利用数值模拟验证了理论分析结果. 关键词: 随机van der Pol系统 Hopf分岔 正交多项式逼近  相似文献   

7.
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied.By considering the energy in the air-gap field of the AC motor,the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system.The characteristic roots and the stable regions of time delay are determined by the direct method,and the relationship between the feedback gain and the length summation of stable regions is analyzed.Choosing the time delay as a bifurcation parameter,we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem.Numerical simulations are also performed,which confirm the analytical results.  相似文献   

8.
We report our experimental and theoretical studies of inwardly propagating chemical waves (antiwaves) in a single-phase reaction-diffusion (RD) system. The experiment was conducted in an open spatial reactor using chlorite-iodide-malonic acid reaction. When the system was set to near Hopf bifurcation point, antiwaves appeared spontaneously, as predicted using both the reaction-diffusion (RD) equation and the complex Ginzburg-Landau equation (CGLE). Antiwaves change to ordinary waves when the system was moved away from the Hopf onset, which still agreed with RD simulations but could not be predicted by CGLE. We thus witnessed a new type of antiwave-wave exchange. Our analysis showed that this exchange occurred when the CGLE broke down as the system was far from the Hopf onset.  相似文献   

9.
张晓芳  吴磊  毕勤胜 《中国物理 B》2016,25(7):70501-070501
We explore the complicated bursting oscillations as well as the mechanism in a high-dimensional dynamical system.By introducing a periodically changed electrical power source in a coupled BVP oscillator, a fifth-order vector field with two scales in frequency domain is established when an order gap exists between the natural frequency and the exciting frequency.Upon the analysis of the generalized autonomous system, bifurcation sets are derived, which divide the parameter space into several regions associated with different types of dynamical behaviors. Two typical cases are focused on as examples,in which different types of bursting oscillations such as sub Hopf/sub Hopf burster, sub Hopf/fold-cycle burster, and doublefold/fold burster can be observed. By employing the transformed phase portraits, the bifurcation mechanism of the bursting oscillations is presented, which reveals that different bifurcations occurring at the transition between the quiescent states(QSs) and the repetitive spiking states(SPs) may result in different forms of bursting oscillations. Furthermore, because of the inertia of the movement, delay may exist between the locations of the bifurcation points on the trajectory and the bifurcation points obtained theoretically.  相似文献   

10.
Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.  相似文献   

11.
刘延柱  薛纭 《物理学报》2009,58(9):5936-5941
基于弹性杆的Kirchhoff模型讨论受拉扭弹性细杆的超螺旋形态.导出细长螺旋杆的等效抗弯和抗扭刚度.分析受拉扭弹性细杆的稳定性和分岔,且利用等效刚度概念将弹性杆的稳定性条件应用于对细长螺旋杆稳定性的判断.在扭矩不变条件下增加拉力至极限值时,直杆平衡状态失稳转为螺旋杆状态.继续增加拉力,直螺旋杆平衡状态失稳卷绕为超螺旋杆.从而对Thompson/Champney实验中受拉扭弹性细杆形成超螺旋形态的多次卷绕现象作出定性的理论解释. 关键词: 弹性细杆 Kirchhoff动力学比拟 等效刚度 超螺旋形态  相似文献   

12.
We consider the influence of a global delayed feedback control which acts on a system governed by a subcritical Ginzburg–Landau equation. The method based on a variational principle is applied for the derivation of a low-dimensional evolution model. In the framework of this model a one-pulse solution is found, and its linear and nonlinear stability analysis is carried out. The existence region for a stable time-periodic pulse solution is found between the boundaries in the parameter space corresponding to a Hopf bifurcation and a saddle-node bifurcation. The obtained results are compared with the results of an analytical linear theory and direct numerical simulations of the original problem.  相似文献   

13.
We present a bifurcation analysis of a normal form for traveling waves in one-dimensional excitable media. The normal form that has been recently proposed on phenomenological grounds is given in the form of a differential delay equation. The normal form exhibits a symmetry-preserving Hopf bifurcation that may coalesce with a saddle node in a Bogdanov-Takens point, and a symmetry-breaking spatially inhomogeneous pitchfork bifurcation. We study here the Hopf bifurcation for the propagation of a single pulse in a ring by means of a center manifold reduction, and for a wave train by means of a multiscale analysis leading to a real Ginzburg-Landau equation as the corresponding amplitude equation. Both the center manifold reduction and the multiscale analysis show that the Hopf bifurcation is always subcritical independent of the parameters. This may have links to cardiac alternans, which have so far been believed to be stable oscillations emanating from a supercritical bifurcation. We discuss the implications for cardiac alternans and revisit the instability in some excitable media where the oscillations had been believed to be stable. In particular, we show that our condition for the onset of the Hopf bifurcation coincides with the well known restitution condition for cardiac alternans.  相似文献   

14.
By means of an extended center-manifold reduction, we derive the nonlocal complex Ginzburg-Landau equation (NCGLE) valid for electrochemical systems with migration coupling. We carry out the stability analysis of the uniform oscillation, elucidating the role of the nonlocal coupling in electrochemical systems at the vicinity of a supercritical Hopf bifurcation. We apply the NCGLE to an experimental system, an N-type negative differential resistance electrochemical oscillator, which is shown to exhibit electrochemical turbulence for wide parameter ranges.  相似文献   

15.
We associate to the plane incompressible Euler equation with periodic conditions the corresponding Hopf equation, as an equation for measures on the space of solenoidal distributions. We define equilibrium states as the solutions of the stationary Hopf equation. We find a class of equilibrium states which corresponds to a class of infinitely divisible distributions, and investigate the properties of gaussian and poissonian states. Equilibrium dynamics for a class of poissonian states is constructed by means of the Onsager vortex equations.Research partially supported by C.N.R., G.N.F.M.  相似文献   

16.
A new kind of nonlinear nonequilibrium patterns--twisted spiral waves--is predicted for periodically forced oscillatory reaction-diffusion media. We show, furthermore, that, in such media, spatial regions with modified local properties may act as traps where propagating waves can be stored and released in a controlled way. Underlying both phenomena is the effect of the wavelength-dependent propagation reversal of traveling phase fronts, always possible when homogeneous oscillations are modulationally stable without forcing. The analysis is performed using as a model the complex Ginzburg-Landau equation, applicable for reaction-diffusion systems in the vicinity of a supercritical Hopf bifurcation.  相似文献   

17.
18.
We study the disordered, multispiral solutions of two-dimensional oscillatory media for parameter values at which the single-spiral/vortex solution is fully stable. Using the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve extremely slowly. This is achieved via a reduction of the CGLE to the evolution of the sole vortex coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of spirals, and a slowly relaxing, intermittent, "vortex glass."  相似文献   

19.
王作雷 《物理学报》2008,57(8):4771-4776
讨论了一类简化Lang-Kobayashi方程的Hopf 分岔的性质.根据分岔理论,给出了系统产生Hopf 分岔的临界时滞条件,然后利用中心流形定理和规范型理论得到了确定Hopf分岔方向和分岔周期解的稳定性计算公式.最后,用数值模拟对理论结果进行了验证. 关键词: Lang-Kobayashi方程 时滞 Hopf分岔 稳定性  相似文献   

20.
We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1//n-m/alpha+1. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order alpha, when 0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号