首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We perform a theoretical study of electronic spectroscopy of dilute NO in supercritical Ar fluid. Absorption and emission lineshapes for the A(2)Sigma(+)<--X(2)Pi Rydberg transition of NO in argon have been previously measured and simulated, which yielded results for the NO/Ar ground- and excited-state pair potentials [Larregaray et al., Chem. Phys. 308, 13 (2005)]. Using these potentials, we have performed molecular dynamics simulations and theoretical statistical mechanical calculations of absorption and emission lineshapes and nonequilibrium solvation correlation functions for a wide range of solvent densities and temperatures. Theory was shown to be in good agreement with simulation. Linear response treatment of solvation dynamics was shown to break down at near-critical temperature due to dramatic change in the solute-solvent microstructure upon solute excitation to the Rydberg state and the concomitant increase of the solute size.  相似文献   

2.
《Chemical physics》2005,308(1-2):13-25
Non-polar solvation dynamics has been investigated using steady-state absorption and emission spectroscopy of the NO A 2Σ+(3sσ) Rydberg state in fluid Ar over a wide range of densities spanning the supercritical regime. Equilibrium molecular dynamics simulations were implemented to derive a new isotropic NO A(3sσ)–Ar pair potential which was further used to investigate the role of local density enhancements on the solvation process by non-equilibrium molecular dynamics simulations. These density inhomogeneities were found to have no influence on the solvation dynamics. Furthermore, the latter was shown to take place in a strongly non-linear regime, especially at low temperatures. This process results from the dramatic change of solute–solvent short range interaction associated with the large solute size change upon excitation to the Rydberg state.  相似文献   

3.
We present here the results of molecular-dynamics simulation of solvation dynamics in supercritical CO(2) at a temperature of about 1.05T(c), where T(c) is the critical temperature, and at a series of densities ranging from 0.4 to 2.0 of the critical density rho(c). We focus on electrostatic solvation dynamics, representing the electronic excitation of the chromophore as a change in its charge distribution from a quadrupolar-symmetry ground state to a dipolar excited state. Two perturbations are considered, corresponding to different magnitudes of solute excited-state dipoles, denoted as d5 and d8. The d8 solute is more attractive, leading to a larger enhancement in CO(2) clustering upon solute electronic excitation. This has a large impact on solvation dynamics, especially at densities below rho(c). At these densities, solvation dynamics is much slower for the d8 than for the d5 solute. For both solutes, solvation dynamics becomes faster at densities above rho(c) at which solvent clustering diminishes. We show that the slowest solvation time scale is associated with solvent clustering and we relate it to solute-solvent mutual translational diffusion and the extent of change in effective local density resulting from solute electronic excitation.  相似文献   

4.
We present a comprehensive theoretical study of the quantum solvation of the HF molecule by small clusters of the H2 isotopomers, p-H2, HD, and o-D2, with up to 13 hydrogen solvent molecules. This complements our earlier work on the HF-doped parahydrogen clusters [H. Jiang and Z. Bacic, J. Chem. Phys. 122, 244306 (2005)]. The ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. Detailed information is obtained regarding the size and isotopomer dependences of the energetics, vibrationally averaged structures, and their rigidity. The rigidity of these clusters is investigated further by analyzing the distributions of their principal moments of inertia from the diffusion Monte Carlo simulations. The clusters are found to be rather rigid, especially when compared with the pure parahydrogen clusters of the same size. Extensive comparison is made with the quantum Monte Carlo results for the CO-doped parahydrogen clusters and significant differences are observed in the size evolution of certain properties, notably the chemical potential.  相似文献   

5.
We present a theoretical study of the quantum solvation of the HF molecule by a small number of parahydrogen molecules, having n = 1-13 solvent particles. The minimum-energy cluster structures determined for n = 1-12 have all of the H(2) molecules in the first solvent shell. The first solvent shell closes at n = 12 and its geometry is icosahedral, with the HF molecule at the center. The quantum-mechanical ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. The zero-point energy of (p-H(2))(n)HF clusters is unusually large, amounting to 86% of the potential well depth for n > 7. The radial probability distribution functions (PDFs) confirm that the first solvent shell is complete for n = 12, and that the 13th p-H(2) molecule begins to fill the second solvent shell. The p-H(2) molecules execute large-amplitude motions and are highly mobile, making the solvent cage exceptionally fluxional. The anisotropy of the solvent, very pronounced for small clusters, decreases rapidly with increasing n, so that for n approximately 8-9 the solvent environment is practically isotropic. The analysis of the pair angular PDF reveals that for a given n, the parahydrogen solvent density around the HF is modulated in a pattern which clearly reflects the lowest-energy cluster configuration. The rigidity of the solvent clusters displays an interesting size dependence, increasing from n = 6 to 9, becoming floppier for n = 10, and increasing again up to n = 12, as the solvent shell is filled. The rigidity of the solvent cage appears to reach its maximum for n = 12, the point at which the first solvent shell is closed.  相似文献   

6.
The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system.  相似文献   

7.
Amplified spontaneous emission (ASE) from single rovibrational levels of valence (non-Rydberg) states of NO molecules has been investigated. The B2Pi (v=24 and 25), L2Pi (v=5 and 6), and I2Sigma+ (v=6) levels have been populated through laser optical-optical double resonance excitation via the Rydberg A2Sigma+ state. Term values for the 2Pi states have been determined with an accuracy of +/-0.03 cm(-1). Analyses of rotationally resolved dispersed ASE spectra in the near infrared region have shown that all the lower states belonged to the Rydberg states. The valence approximately Rydberg coupling in the upper manifolds has driven ASE systems from the valence to the Rydberg levels where they benefit from the strong intensities of inter-Rydberg transitions with Deltav=0. The experimentally predicted valence approximately Rydberg interactions have been compared with theoretical treatments.  相似文献   

8.
A theory on the time development of the density and current fields of simple fluids under an external field is formulated through the generalized Langevin formalism. The theory is applied to the linear solvation dynamics of a fixed solute regarding the solute as the external field on the solvent. The solute-solvent-solvent three-body correlation function is taken into account through the hypernetted-chain integral equation theory, and the time correlation function of the random force is approximated by that in the absence of the solute. The theoretical results are compared with those of molecular-dynamics (MD) simulation and the surrogate theory. As for the transient response of the density field, our theory is shown to be free from the artifact of the surrogate theory that the solvent can penetrate into the repulsive core of the solute during the relaxation. We have also found a large quantitative improvement of the solvation correlation function compared with the surrogate theory. In particular, the short-time part of the solvation correlation function is in almost perfect agreement with that from the MD simulation, reflecting that the short-time expansion of the theoretical solvation correlation function is exact up to t(2) with the exact three-body correlation function. A quantitative improvement is found in the long-time region, too. Our theory is also applied to the force-force time correlation function of a fixed solute, and similar improvement is obtained, which suggests that our present theory can be a basis to improve the mode-coupling theory on the solute diffusion.  相似文献   

9.
We present results of a theoretical study of structural and superfluid properties of parahydrogen (p-H(2)) clusters comprising 25, 26, and 27 molecules at low temperature. The microscopic model utilized here is based on the Silvera-Goldman pair potential. Numerical results are obtained by means of quantum Monte Carlo simulations, making use of the continuous-space worm algorithm. The clusters are superfluid in the low temperature limit, but display markedly different physical behaviors. For N = 25 and 27, superfluidity at low temperature arises as clusters melt, that is, become progressively liquid-like as a result of quantum effects. On the other hand, for N = 26, the cluster remains rigid and solid-like. We argue that the cluster (p-H(2))(26) can be regarded as a mesoscopic "supersolid". This physical picture is supported by results of simulations in which a single p-H(2) molecule in the cluster is isotopically substituted.  相似文献   

10.
Integrated within an appropriate theoretical framework, molecular dynamics (MD) simulations are a powerful tool to complement experimental studies of solvation dynamics. Together, experiment, theory, and simulation have provided substantial insight into the dynamic behavior of polar solvents. MD investigations of solvation dynamics are especially valuable when applied to the heterogeneous environments found in biological systems, where the calculated response of the environment to the electrostatic perturbation of the probe molecule can easily be decomposed by component (e.g., aqueous solvent, biomolecule, ions), greatly aiding the molecular-level interpretation of experiments. A comprehensive equilibrium and nonequilibrium MD study of the solvation dynamics of the fluorescent dye Hoechst 33258 (H33258) in aqueous solution is presented. Many fluorescent probes employed in experimental studies of solvation dynamics in biological systems, such as the DNA minor groove binder H33258, have inherently more conformational flexibility than prototypical fused-ring chromophores. The role of solute flexibility was investigated by developing a fully flexible force-field for the H33258 molecule and by simulating its solvation response. While the timescales for the total solvation response calculated using both rigid (0.16 and 1.3 ps) and flexible (0.17 and 1.4 ps) models of the probe closely matched the experimentally measured solvation response (0.2 and 1.2 ps), there were subtle differences in the response profiles, including the presence of significant oscillations for the flexible probe. A decomposition of the total response of the flexible probe revealed that the aqueous solvent was responsible for the overall decay, while the oscillations result from fluctuations in the electrostatic terms in the solute intramolecular potential energy. A comparison of equilibrium and nonequilibrium approaches for the calculation of the solvation response confirmed that the solvation dynamics of H33258 in water is well-described by linear response theory for both rigid and flexible models of the probe.  相似文献   

11.
Molecular Dynamics Simulations of the shell dynamics and normal mode analysis (NMA) are carried out to study Rydberg photoexcitation of NO in Xe and Kr solids. In the case of the NO doped Kr system we have completed a previous study on shell dynamics by focusing only on the NMA, however, in the case of the NO doped Xe system we have carried out both studies: shell dynamics and NMA. For this purpose, we have used fitted Lennard–Jones potential parameters for NO(A2Σ+)–Kr and NO(A2Σ+)–Xe interactions since they have not been reported in literature. These parameters were fitted taking into account the match of simulation results to the available spectroscopic data. The dynamics of the Xe–NO matrix yielded a great dispersion in the trajectories and a slower medium response with respect to Kr–NO matrix. The NMA have allowed us to explain the immediate shell dynamics after photoexcitation, showing the validity of harmonic approximation of potentials. The results are shown comparatively with the rest of the studied matrices (Ar–NO and Ne–NO).  相似文献   

12.
Molecular dynamics simulation of an aqueous solution of acetamide was performed using Lennard–Jones 12-6-1 potentials to describe the solute–solvent interactions, and TIP3P to describe the water–water interactions. The Morokuma decomposition scheme and the ESIE solute atomic charges were used to reproduce the molecular parameters of the solute–water interaction potential. The results showed that the functions that use the EX-PL-DIS-ES interaction model lead to good values of the structural and energy properties (in particular, the hydration shell and the solvation energies) when they are compared with those from using AMBER-derived parameters, and with the available theoretical and experimental data.  相似文献   

13.
We report the results of a (2+1) resonance-enhanced multiphoton ionization (REMPI) study of the E2Sigma+(4ssigma) Rydberg state of NO-Kr. We present an assignment of the two-photon spectrum based on a simulation, and discuss it in the context of previously-reported spectra of NO-Ne and NO-Ar. In addition, we report on spectra in the region of the vNO=1 level of the E, F and H' 4s and 3d Rydberg states of NO-Rg (Rg=Ne-Kr). Since the NO vibrational frequency is affected by electron donation from the rare-gas (Rg) atom to the NO+ core, as well as by the penetration of the Rydberg electron, the fundamental NO-stretch frequency reflects the interactions in the complex. The results indicate that the 4s Rydberg state has a strong interaction between the NO+ core and the Kr atom, as was the case for NO-Ar and NO-Ne. For the 3d Rydberg states, although penetration is not as significant as for the 4s Rydberg states, it does play an important role, with subtle angular effects being notable.  相似文献   

14.
We report on microscopic observation of solvation by argon atoms of excited states of an ethylenic-like molecule, TDMAE (tetrakis dimethylaminoethylene). Two experimental methods were used: gas phase dynamics for the observation of the evolution through excited states, matrix isolation spectroscopy for characterization of the initial states. Excited state dynamics was recorded after the molecule had been deposited on the surface of a large argon cluster (n approximately 100) by pick-up. The deposited cluster was characterized by mass spectrometry and by its shifted photoelectron spectrum. The time evolution of the system was visualized by femtosecond pump/probe velocity map imaging of photoelectrons. The time evolution of deposited TDMAE excited at 266 nm can be modeled via a modified three state model, as in the free molecule. The initially excited state is of valence character, and a Rydberg state mediates the passage to a zwitterionic configuration. The specific solvation of Rydberg states by the surface of the cluster was directly observed and is discussed. It represents the striking outcome of the present work. It is inferred that differently from the gas phase, solvated Rydberg states resulting from state mixing within a R(n/lambda) complex in the presence of the argon surface are reached. Solvation of these Rydberg states should be effective through interaction of the ion core of the excited molecules with the cluster.  相似文献   

15.
16.
We present a detailed theoretical study of the solvation structure and solvent induced vibrational shifts for an OCS molecule embedded in pure parahydrogen clusters and in mixed parahydrogen/helium clusters. The use of two recent OCS-(parahydrogen) and OCS-helium ab initio potential energy surfaces having explicit dependence on the asymmetric stretch of the OCS molecule allows calculation of the frequency shift of the OCS nu(3) vibration as a function of the cluster size and composition. We present results for clusters containing up to a full first solvation shell of parahydrogen (N=17 molecules), and up to M=128-N helium atoms. Due to the greater interaction strength of parahydrogen than helium with OCS, in the mixed clusters the parahydrogen molecules always displace He atoms in the first solvation shell around OCS and form multiple axial rings as in the pure parahydrogen clusters. In the pure clusters, the chemical potential of parahydrogen shows several magic numbers (N=8,11,14) that reflect an enhanced stability of axial rings containing one less molecule than required for complete filling at N=17. Only the N=14 magic number survives in the mixed clusters, as a result of different filling orders of the rings and greater delocalization of both components. The OCS vibration shows a redshift in both pure and mixed clusters, with N-dependent values that are in good agreement with the available experimental data. The dependence of the frequency shift on the cluster size and its composition is analyzed in terms of the parahydrogen and helium density distributions around the OCS molecule as a function of N and M. The frequency shift is found to be strongly dependent on the detailed distribution of the parahydrogen molecules in the pure parahydrogen clusters, and to be larger but show a smoother dependence on N in the presence of additional helium, consistent with the more delocalized nature of the mixed clusters.  相似文献   

17.
We present a study of local density augmentation around an attractive solute (i.e., giving rise to more attractive interaction with the solvent than solvent-solvent interactions) in supercritical fluoroform. This work is based on molecular dynamics simulations of coumarin 153 in supercritical fluoroform at densities both above and below the critical density, ranging from dilute gas-like to liquid-like, at a reduced temperature (T/T(c)) of 1.03. We focused on studying the structure of the solvation shell and the variation of the solute electronic absorption and emission shifts with density. Quantum calculations at the density functional theory (DFT) level were run on the solute in the ground state, and time-dependent DFT calculations were performed in the solute excited state in order to determine the solute-solvent potential parameters. The results obtained for the Stokes shift are in agreement with the experimental measurements. To evaluate local density augmentation from simulations, we used two different definitions, one based on the solvation number and the other derived from solvatochromic shifts. In the former case, the agreement with experimental results is good, while, in the latter case, better agreement is achieved by perturbatively including the induced-dipole contribution to the solvation energy.  相似文献   

18.
Electronic structure calculations, steady-state electronic spectroscopy, and femtosecond time-resolved emission spectroscopy are used to examine the photophysics of trans-4-(dimethylamino)-4'-cyanostilbene (DCS) and its solvent dependence. Semiempirical AM1/CI calculations suggest that an anilino TICT state is a potential candidate for the emissive state of DCS in polar solvents. But observation of large and solvent-independent absorption and emission transition moments in a number of solvents (M(abs) = 6.7 +/- 0.4 D and M(em) = 7.6 +/- 0.8 D) rule out the involvement of any such state, which would have a vanishingly small transition moment. The absorption and steady-state emission spectra of DCS evolve in a systematic manner with solvent polarity, approximately as would be expected for a single, highly polar excited state. Attempts to fit the solvatochromism of DCS using standard dielectric continuum models are only partially successful when values of the solute dipole moments suggested by independent measurements are assumed. The shapes of the absorption and emission spectra of DCS change systematically with solvent polarity in a manner that is semiquantitatively reproduced using a coupled-state model of the spectroscopy. Kerr-gate emission measurements show that the emission dynamics of DCS down to subpicosecond times reflect only solvent relaxation, rather than any more complicated electronic state kinetics. The spectral response functions measured with DCS are well correlated to those previously reported for the solvation probe coumarin 153, indicating DCS to be a useful alternative probe of solvation dynamics.  相似文献   

19.
We present a complete characterization, based on femtosecond pump-probe spectroscopy and molecular dynamics simulations, of the ultrafast dynamics of electronic bubble formation in solid parahydrogen upon impulsive excitation of impurity-doped sites, which correlate with the lowest Rydberg state of the NO impurity. The high temporal resolution of the experiment allows us to identify three time scales in the structural dynamics. A first ultrafast expansion (<150 fs), associated with the release of approximately 80% of the excess energy available to the system after excitation, is accompanied by a transient narrowing of the spatial distribution of the first shell of H2 molecules around the impurity. In a subsequent stage (up to approximately 800 fs), the cavity expansion slows down, and energy starts to flow irreversibly into the crystal. Finally, the lattice undergoes a slow structural reorganization at the impurity site (5-10 ps). A weak low-frequency recurrence, probably associated with an elastic response of the crystal, is observed at approximately 10 ps. The absence of polarization dependence indicates that the dynamics is largely dominated by translational (radial) motions of the molecules surrounding NO and not by the rotational motion of the impurity. Molecular dynamics simulations with temperature corrections, to mimic zero-point fluctuations, fully support the experimental results and show that the bubble model is suited to describe the dynamics of the system. It appears that the response of the medium around the impurity at short times is typical of a liquid solvent rather than that of a solid.  相似文献   

20.
We report on the dynamics of multiphoton excitation and dissociation of NO(2) at wavelengths between 395 and 420 nm and intensities between 4 and 10 TW cm(-2). The breakup of the molecule is monitored by NO A (2)Sigma(+)n(')=1,0-->X (2)Pi(r)n(")=0 fluorescence as a function of time delay between the driving field and a probe field which depletes the emission. It is found that generation of n(')=0 and 1 NO A (2)Sigma(+) results in different fluorescence modulation patterns due to the intense probe field. The dissociation dynamics are interpreted in terms of nuclear motions over light-induced potentials formed by coupling of NO(2) valence and Rydberg states to the applied field. Based on this model, it is argued that the time and intensity dependences of A (2)Sigma(+)n(')=0-->X (2)Pi(r)n(")=0 fluorescence are consistent with delayed generation of NO A (2)Sigma(+)n(')=0 via a light-induced bond-hardening brought about by the transient coupling of the dressed A (2)B(2) and Rydberg 3ssigma (2)Sigma(g) (+) states of the parent molecule. The increasingly prompt decay of A (2)Sigma(+)n(')=1-->X (2)Pi(r)n(")=0 fluorescence with increasing intensity, on the other hand, is consistent with a direct surface crossing between the X (2)A(1) and 3ssigma (2)Sigma(g) (+) dressed states to generate vibrationally excited products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号