首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotating spiral and scroll waves (vortices) are investigated in the FitzHugh-Nagumo model of excitable media. The focus is on a parameter region in which there exists bistability between alternative stable vortices with distinct periods. Response functions are used to predict the filament tension of the alternative scrolls and it is shown that the slow-period scroll has negative filament tension, while the filament tension of the fast-period scroll changes sign within a hysteresis loop. The predictions are confirmed by direct simulations. Further investigations show that the slow-period scrolls display features similar to delayed after-depolarization and tend to develop into turbulence similar to ventricular fibrillation (VF). Scrolls with positive filament tension collapse or stabilize, similar to monomorphic ventricular tachycardia (VT). Perturbations, such as boundary interaction or shock stimulus, can convert the vortex with negative filament tension into the vortex with positive filament tension. This may correspond to transition from VF to VT unrelated to pinning.  相似文献   

2.
Scroll waves are an important example of self-organisation in excitable media. In cardiac tissue, scroll waves of electrical activity underlie lethal ventricular arrhythmias and fibrillation. They rotate around a topological line defect which has been termed the filament. Numerical investigation has shown that anisotropy can substantially affect the dynamics of scroll waves. It has recently been hypothesised that stationary scroll wave filaments in cardiac tissue describe geodesics in a space whose metric is the inverse diffusion tensor. Several computational studies have validated this hypothesis, but until now no quantitative theory has been provided to study the effects of anisotropy on scroll wave filaments. Here, we review in detail the recently developed covariant formalism for scroll wave dynamics in general anisotropy and derive the equations of motion of filaments. These equations are fully covariant under general spatial coordinate transformations and describe the motion of filaments in a curved space whose metric tensor is the inverse diffusion tensor. Our dynamic equations are valid for thin filaments and for general anisotropy and we show that stationary filaments obey the geodesic equation. We extend previous work by allowing spatial variations in the determinant of the diffusion tensor and the reaction parameters, leading to drift of the filament.  相似文献   

3.
The evolution of scroll waves in excitable media with spherical shell geometries is studied as a function of shell thickness and outer radius. The motion of scroll wave filaments that are the locii of phaseless points in the medium and organize the wave pattern is investigated. When the inner radius is sufficiently large the filaments remain attached to both the inner and outer surfaces. The minimum size of the sphere that supports spiral waves and the maximum number of spiral waves that can be sustained on a sphere of given size are determined for both regular and random initial distributions. When the inner radius is too small to support spiral waves the filaments detach from the inner surface and form a curved filament connecting the two spiral tips in the surface. In certain parameter domains the filament is an arc of a circle that shrinks with constant shape. For parameter values close to the meandering border, the filament grows and collisions with the sphere walls lead to turbulent filament dynamics. (c) 2001 American Institute of Physics.  相似文献   

4.
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.  相似文献   

5.
We study the asymptotic behavior of scroll wave turbulence in large three-dimensional excitable media modeled by FitzHugh-Nagumo equations. The focus is on the type of turbulence caused by negative tension of scroll wave filaments, which is considered to be one of the mechanisms of cardiac fibrillation. We discovered that the initial increase in turbulence complexity can be followed by intermittent self-organization, when complex filament tangles are replaced by a small number of relatively stable triple filament strands. The intermittency is the result of a competition between the destabilizing effect of negative tension and mutual attraction of filaments with similar orientation.  相似文献   

6.
It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a curved space whose metric is the inverse diffusion tensor. Several numerical studies support this hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive dynamic equations for the filament in the case of general anisotropy. These equations are covariant under general spatial coordinate transformations and describe the motion of a stringlike object in a curved space whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey the geodesic equation.  相似文献   

7.
Wave propagation in the heart has a discrete nature, because it is mediated by discrete intercellular connections via gap junctions. Although effects of discreteness on wave propagation have been studied for planar traveling waves and vortexes (spiral waves) in two dimensions, its possible effects on vortexes (scroll waves) in three dimensions are not yet explored. In this article, we study the effect of discrete cell coupling on the filament dynamics in a generic model of an excitable medium. We find that reduced cell coupling decreases the line tension of scroll wave filaments and may induce negative filament tension instability in three-dimensional excitable lattices.  相似文献   

8.
Scroll waves are vortices that occur in three-dimensional excitable media. Scroll waves have been observed in a variety of systems including cardiac tissue, where they are associated with cardiac arrhythmias. The disorganization of scroll waves into chaotic behavior is thought to be the mechanism of ventricular fibrillation, which lethality is widely known. One of the possible mechanisms of scroll wave instability is negative filament tension, which was studied theoretically using low-dimensional models of excitable medium. In this article we perform a numerical study of negative filament tension using the Luo-Rudy phase 1 model, which is widely used in cardiac electrophysiology. We show that this instability exists in this model, study its manifestation and discuss its relation to cardiac arrhythmogenesis.  相似文献   

9.
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.  相似文献   

10.
The mechanism of destabilization is studied for the rotating vortices (scroll waves and spiral waves) in excitable media induced by a parameter modulation in the form of a travelling-wave. It is found that a rigid rotating spiral in the two-dimensional (2D) system undergoes a synchronized drift along a straight line, and a 3D scroll ring with its filament closed into a circle can be reoriented only if the direction of wave number of a travelling-wave perturbation is parallel to the ring plane. Then, in order to describe the behaviour of the synchronized drift of spiral wave and the reorientation of scroll ring, the approximate formulas are given to exhibit qualitative agreements with the observed results.  相似文献   

11.
The selection of shape and rotation frequency for scroll waves in reaction-diffusion equations modeling excitable media is investigated. For scrolls with uniform twist about straight filaments, asymptotic methods are used to derive free-boundary equations at leading and first order. Both orders are validated against full solutions of the reaction-diffusion equations. Using these two orders and with no adjustable parameters, the shape and frequency of waves are correctly predicted except possibly near the point of propagation failure where the core becomes large.  相似文献   

12.
We describe a novel nucleation mechanism of scroll rings in three-dimensional reaction-diffusion systems with anomalous dispersion. The vortices form after the collision of two spherical wave fronts from a third, trailing wave that only partially annihilates in the wake of its predecessor. Depending on the relative positions of the three relevant wave sources, one obtains untwisted or twisted scroll rings. The formation of both vortex structures is demonstrated for a modified Belousov-Zhabotinsky reaction.  相似文献   

13.
We report on the experimental observation of the airflow motion induced by an 800 nm, 1 k Hz femtosecond filament in a cloud chamber filled with air and helium. It is found that vortex pairs with opposite rotation directions always form both below and above the filaments. We do not observe that the vortices clearly formed above the filament in air just because of the formation of smaller particles with weaker Mie scattering.Simulations of the airflow motion in helium are conducted by using the laser filament as a heat source, and the simulated pattern of vortices and airflow velocity agree well with the experimental results.  相似文献   

14.
Experimental and computational studies of the formation and evolution of scroll waves in three-dimensional excitable media are presented. Scroll waves are initiated in the photosensitive Belousov-Zhabotinsky reaction by perturbing traveling waves transverse to their direction of propagation. Scroll rings are generated by perturbing circular waves, which expand or contract depending on the strength of an imposed excitability gradient and its direction relative to the rotational direction of the scroll wave. (c) 1998 American Institute of Physics.  相似文献   

15.
Anchoring of spiral and scroll waves in excitable media has attracted considerable interest in the context of cardiac arrhythmias. Here, by bombarding inclusions with drifting spiral and scroll waves, we explore the forces exerted by inclusions onto an approaching spiral and derive the equations of motion governing spiral dynamics in the vicinity of inclusion. We demonstrate that these forces nonmonotonically depend on distance and can lead to complex behavior: (a)?anchoring to small but circumnavigating larger inclusions; (b)?chirality-dependent anchoring.  相似文献   

16.
A full linear stability of a straight scroll wave in an excitable medium is presented. The five eigenmode branches which correspond to deformation in the third dimension of the five main modes of two-dimensional (2D) spiral dynamics are found to play a dominant role. For untwisted scroll waves, modulations in the third dimension have stabilizing or destabilizing effects on the different modes depending on the parameter regimes, in partial agreement with previous predictions. The influence of twist on the different branches is investigated. In particular, the sproing instability is seen to arise from the twist-induced deformation of the translation branches above a threshold twist.  相似文献   

17.
18.
We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory.In particular for the excitable media with equal diffusion,we obtain a close system for the motion of the filament.With an example of the Oregonator Model,our results are in good agreement with those simulated by Windree.  相似文献   

19.
Coherent vortices in two-dimensional turbulence induce far-field effects that stabilize vorticity filaments and inhibit the generation of new vortices. We show that the large-scale energy sink often included in numerical simulations of statistically stationary two-dimensional turbulence reduces the stabilizing role of the vortices, leading to filament instability and to continuous formation of new coherent vortices. This counterintuitive effect sheds new light on the mechanisms responsible for vortex formation in forced-dissipated two-dimensional turbulence, and it has significant impact on the temporal evolution of the vortex population in freely decaying turbulence. The time dependence of vortex statistics in the presence of a large-scale energy sink can be approximately described by a modified version of the scaling theory developed for small-scale dissipation.  相似文献   

20.
The interaction of vortex filaments in an ideal incompressible fluid with the free surface of the latter is investigated in the canonical formalism. A Hamiltonian formulation of the equations of motion is given in terms of both canonical and noncanonical Poisson brackets. The relationship between these two approaches is analyzed. The Lagrangian of the system and the Poisson brackets are obtained in terms of vortex lines, making it possible to study the dynamics of thin vortex filaments with allowance for finite thickness of the filaments. For two-dimensional flows exact equations of motion describing the interaction of point vortices and surface waves are derived by transformation to conformal variables. Asymptotic steady-state solutions are found for a vortex moving at a velocity lower than the minimum phase velocity of surface waves. It is found that discrete coupled states of surface waves above a vortex are possible by virtue of the inhomogeneous Doppler effect. At velocities higher than the minimum phase velocity the buoyant rise of a vortex as a result of Cherenkov radiation is described in the semiclassical limit. The instability of a vortex filament against three-dimensional kink perturbations due to interaction with the “image” vortex is demonstrated. Zh. éksp. Teor. Fiz. 115, 894–919 (March 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号