首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The third-order polarization for coherent anti-Stokes Raman scattering (CARS) from a pure state is described by 48 terms in perturbation theory, but only 4 terms satisfy the rotating wave approximation. They are represented by Feynman dual time-line diagrams and four-wave mixing energy level diagrams. In time-resolved (tr) fs and fs/ps CARS from the ground vibrational state, one resonant diagram, which is the typical CARS term, with three field interactions-pump, Stokes, followed by probe-on the ket is dominant. Using the separable, displaced harmonic oscillators approximation, an analytic result is obtained for the four-time correlation function in the CARS third-order polarization. Dlott's phenomenological expression for off-resonance CARS from the ground vibrational state is derived using a three-state model. We calculated the tr fs and fs/ps CARS for toluene and Rhodamine 6G (R6G), initially in the ground vibrational state, to compare with experimental results. The observed vibrational features and major peaks for both tr fs and fs/ps CARS, from off-resonance (for toluene) to resonance (for R6G) pump wavelengths, can be well reproduced by the calculations. The connections between fs/ps CARS, fs stimulated Raman spectroscopy, and impulsive stimulated scattering for toluene and R6G are discussed.  相似文献   

2.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

3.
We present a significant sensitivity improvement of interferometric multiplex coherent anti-Stokes Raman scattering (CARS) by optimizing the power, bandwidth and phase of the pump, Stokes, and probe pulses independently. Fourier transform spectral interferometry (FTSI) is used to retrieve the entire complex quantity of the CARS spectrum by utilizing the non-resonant background as a local oscillator. Background-free spontaneous Raman-like vibrational spectra can be measured over the 500-1400 cm(-1) range with 20 cm(-1) spectral resolution within a tens of microseconds time scale. Chemically selective microscopy of a multicomponent polymer film is performed to demonstrate the feasibility of its microscopy application. A systematic analysis of the signal recovery method and several technical issues are discussed.  相似文献   

4.
We describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme. Overlap of a femtosecond Stokes pulse with chirped pump/probe pulses introduces a temporal gate that defines the spectral resolution of the technique, allowing single-shot acquisition of high spectral resolution CARS spectra over a several hundred wavenumber bandwidth. Simulated chirped (c-) CARS spectra match the experimental results, quantifying the dependence of the high spectral resolution on the properties of the chirped pulse. c-CARS spectromicroscopy offers promise as a simple and generally applicable high spatial resolution, chemically specific imaging technique for studying complex biological and materials samples.  相似文献   

5.
《Chemical physics letters》1987,140(3):306-310
Using independently tunable pump and probe pulses in the infrared, time- and frequency-resolved spectroscopy of vibrationally excited, polyatomic molecules in liquids is demonstrated for the first time. Experimental data are presented for CHBr3, measuring the population lifetime via excited-state absorption of the CH-stretching mode; for larger probe delay, the non-equilibrium population of intermediate vibrational levels in the relaxation ladder of bromoform is observed.  相似文献   

6.
Femtosecond stimulated Raman scattering (FSRS) spectroscopy is a powerful pump–probe technique that can track electronic and vibrational dynamics with high spectral and temporal resolution. The investigation of extremely short‐lived species, however, implies deciphering complex signals and is ultimately hampered by unwanted nonlinear effects once the time resolution limit is approached and the pulses overlap temporally. Using the loop diagrams formalism we calculate the fifth‐order response of a model system and address the limiting case where the relevant dynamics timescale is comparable to the pump–pulse duration and, consequently, the pump and the probe overlap temporally. We find that in this regime, additional diagrams that do not contribute for temporally well separated pulses need to be taken into account, giving rise to new time‐dependent features, even in the absence of photoinduced dynamics and for negative delays.  相似文献   

7.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this spectroscopy. However, it can be demonstrated that by shaping the femtosecond pulses a selective excitation of specific vibrational modes is possible. We demonstrate that using a feedback-controlled optimization technique, molecule-specific CARS spectra can be obtained from a mixture of different substances. A careful analysis of the experimental results points to a nontrivial control of the vibrational mode dynamics in the electronic ground state of the molecules as underlying mechanism.  相似文献   

8.
Time-resolved transient absorption spectroscopy with sub-9 fs ultrashort laser pulses in the deep-ultraviolet (DUV) region is reported for the first time. Single 8.7 fs DUV pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. Electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of thymine over the full spectral range using a 128-channel lock-in detector. Vibrational modes of the electronic ground state and excited states can be observed as well as the decay dynamics of the electronic excited state. Information on the initial phase of the vibrational modes is extracted from the measured difference absorbance trace, which contains oscillatory structures arising from the vibrational modes of the molecule. Along with other techniques such as time-resolved infrared spectroscopy, spectroscopy with sub-9 fs DUV pulses is expected to contribute to a detailed understanding of the photochemical dynamics of biologically significant molecules that absorb in the DUV region such as DNA and amino acids.  相似文献   

9.
A linearized optimal control method in combination with mixed quantum/classical molecular dynamics simulation is used for numerically investigating the possibility of controlling photodissociation wave packets of I(2)(-) in water. Optimal pulses are designed using an ensemble of photodissociation samples, aiming at the creation of localized dissociation wave packets. Numerical results clearly show the effectiveness of the control although the control achievement is reduced with an increase in the internuclear distance associated with a target region. We introduce effective optimal pulses that are designed using a statistically averaged effective dissociation potential, and show that they semiquantitatively reproduce the control achievements calculated by using optimal pulses. The control mechanisms are interpreted from the time- and frequency-resolved spectra of the effective optimal pulses.  相似文献   

10.
A theoretical expression is developed for femtosecond coherent anti-Stokes Raman scattering (CARS) to quantitatively account for the vibrational line shape in the presence of nonresonant signal. The contributions of the resonant and nonresonant components are extracted from the emitted signal line shape as a function of Stokes wavelength and as a function of the temporal overlap of the two pump pulses (for spectrally resolved femtosecond CARS). The theory is compared to the measured spectra of the oxygen vibrational transition DeltaG(01)=1556.4 cm(-1) for temporal detunings of 0 and 700 fs.  相似文献   

11.
Optimal control theory is used to tailor laser pulses which enhance a femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) spectrum in a certain frequency range. For this aim the optimal control theory has to be applied to a target state distributed in time. Explicit control mechanisms are given for shaping either the Stokes or the probe pulse in the four-wave mixing process. A simple molecule for which highly accurate potential energy surfaces are available, namely molecular iodine, is used to test the procedure. This approach of controlling vibrational motion and delivering higher intensities to certain frequency ranges might also be important for the improvement of CARS microscopy.  相似文献   

12.
A novel procedure is developed to describe and reproduce experimental coherent anti-Stokes Raman scattering (CARS) data, with particular emphasis on highly congested spectral regions. The approach, exemplified here with high-quality multiplex CARS data, makes use of spontaneous Raman scattering results. It is shown that the underlying vibrational Raman response can be retrieved from the multiplex CARS spectra, so that the Raman spectrum can be reconstituted, provided an adequate signal-to-noise ratio (SNR) is present in the experimental data and sufficient a priori knowledge of the vibrational resonances involved exists. The conversion of CARS to Raman data permits a quantitative interpretation of CARS spectra. This novel approach is demonstrated for highly congested multiplex CARS spectra of adenosine mono-, di-, and triphosphate (AMP, ADP, and ATP), nicotinamide adenine dinucleotide (NAD+), and small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Quantitative determination of nucleotide concentrations and composition analysis in mixtures is demonstrated.  相似文献   

13.
Vibrational energy relaxation of the carbonyl CO stretching modes of CH3COOD and CD3COOD in D2O is studied by frequency-resolved infrared pump-probe spectroscopy. The spectral change caused by the vibrational excitation includes two dynamical components with the time constants of 450 and 980 fs for CH3COOD and 390 and 930 fs for CD3COOD. The two dynamical components exhibit different spectral properties. There are two species of acetic acid forming different complexes with solvent water molecules. The time constants are almost the same for CH3COOD and CD3COOD, suggesting that the vibrational energy deposited to the carbonyl group is first distributed among vibrational modes not related to the methyl group.  相似文献   

14.
Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for interfacial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).  相似文献   

15.
Time-resolved coherent anti-Stokes Raman-scattering (CARS) measurements are carried out for iodine (I2) in solid krypton matrices. The dependence of vibrational dephasing time on temperature and vibrational quantum number v is studied. The v dependence is approximately quadratic, while the temperature dependence of both vibrational dephasing and spectral shift, although weak, fits the exponential form characteristic of dephasing by pseudolocal phonons. The analysis of the data indicates that the frequency of the pseudolocal phonons is approximately 30 cm(-1). The longest dephasing times are observed for v = 2 being approximately 300 ps and limited by inhomogeneous broadening. An increase in the dephasing rate of v = 2 as the temperature is lowered to T = 2.6 K is taken as a clear indication of lattice-strain-induced inhomogeneity of the ensemble coherence.  相似文献   

16.
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.  相似文献   

17.
The monitoring of the excited-state dynamics by time- and frequency-resolved spontaneous emission spectroscopy has been studied in detail for a model exhibiting an excited-state curve crossing. The model represents characteristic aspects of the photoinduced ultrafast dynamics in large molecules in the gas or condensed phases and accounts for strong nonadiabatic and electron-vibrational coupling effects, as well as for vibrational relaxation and optical dephasing. A comprehensive overview of the dependence of spontaneous emission spectra on the characteristics of the excitation and detection processes (such as carrier frequencies, pump/gate pulse durations, as well as optical dephasing) is presented. A systematic comparison of ideal spectra, which provide simultaneously perfect time and frequency resolution and thus contain maximal information on the system dynamics, with actually measurable time- and frequency-gated spectra has been carried out. The calculations of real time- and frequency-gated spectra demonstrate that complementary information on the excited-state dynamics can be extracted when the duration of the gate pulse is varied.  相似文献   

18.
The ability to enhance resonant signals and eliminate the non-resonant background is analyzed for coherent anti-Stokes Raman scattering (CARS). The analysis is done at a specific frequency as well as for broadband excitation using femtosecond pulse-shaping techniques. An appropriate objective functional is employed to balance resonant signal enhancement against non-resonant background suppression. Optimal enhancement of the signal and minimization of the background can be achieved by shaping the probe pulse alone while keeping the pump and Stokes pulses unshaped. In some cases analytical forms for the probe pulse can be found, and numerical simulations are carried out for other circumstances. It is found that a good approximate optimal solution for resonant signal enhancement in two-pulse CARS is a superposition of linear and arctangent-type phases for the pump. The well-known probe delay method is shown to be a quasi-optimal scheme for broadband background suppression. The results should provide a basis to improve the performance of CARS spectroscopy and microscopy.  相似文献   

19.
20.
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号