首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

2.
A novel amphiphilic thermosensitive poly(ethylene glycol)45b‐poly(methyl methacrylate46co‐3‐(trimethoxysilyl)propyl methacrylate)2b‐poly(N‐isopropylacrylamide)429 (PEG45b‐P(MMA46co‐MPMA2)‐b‐PNIPAAm429) triblock copolymer was synthesized via consecutive atom transfer radical polymerization techniques. The thermoinduced association behavior of the resulting triblock copolymers in aqueous medium was further investigated in detail by 1H NMR, transmission electron microscopy, and dynamic light scattering. The results showed that at the temperature (25 °C) below the LCST, PEG45b‐P(MMA46co‐MPMA2)‐b‐PNIPAAm429 triblock copolymers self‐assembled into the core crosslinked micelles with the hydrophobic P(MMA‐co‐MPMA) block constructing a dense core, protected by the mixed soluble PEG and PNIPAAm chains acting as a hydrophilic shell simultaneously. With an increase in temperature, the resulting core‐shell micelles converted into a new type of micelles with the hydrophilic PEG chains stretching out from the hydrophobic core through the collapsed PNIPAAm shell. On the other hand, at the temperature (40 °C) above the LCST, such triblock copolymers formed the crosslinked vesicles with the hydrophobic PNIPAAm and P(MMA‐co‐MPMA) blocks constructing a membrane core and the soluble PEG chains building the hydrophilic lumen and the shell. On further decreasing the temperature, the resulting vesicles underwent transformation from the shrunken to the expanded status, leading to the formation of swollen vesicles with enlarged size. This study is believed to present the first formation of two types of hybrid crosslinked self‐assemblies by thermoinduced regulation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Strongly asymmetric chlorinated polybutadiene‐b‐polystyrene, [P((CB)xb‐(PS)y)] diblock copolymers with increasing x/(x + y) ratios (up to 5.2 mol %) have been synthesized by the selective chlorination of the polybutadiene (PB) block in solution. Chlorination has been performed in anhydrous dichloromethane added with an antioxidant [2,2′‐methylenebis‐(6‐tert‐butyl‐4‐methyl‐phenol)], at −50°C, under a continuous Ar flow and in the dark. Under the optimized experimental conditions, the PB chlorination is not complete, but the PS block is left unmodified. Even in the presence of a large chlorine excess (Cl2/butene unit molar ratio of 2.5), the experimental degree of chlorination of homo PB does not exceed 85%. The chlorinated copolymers have been characterized by 1H‐NMR, IR spectroscopy, size‐exclusion chromatography, and elemental analysis. The chlorinated copolymers have also been studied by DSC and SAXS after annealing at 150°C. Although at this temperature the parent homopolymers are immiscible, no microphase separation has been observed for the block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 233–244, 1999  相似文献   

4.
Well-defined linear dihydrophilic amphiphilic ABA-type triblock copolymers of ε-caprolactone (CL) and N-isopropylacrylamide (NIPAAm) have successfully been synthesized with a high yield by combining the ring opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization methods. The resulted block copolymer shows the formation of micelles in water as supported by light scattering. The critical micelle concentration (cmc) value of the micelle increases with the increase in the chain length of the poly (N-isopropylacrylamide) (PNIPAAm) block. Cloud point of the block copolymers decreases with the decrease in the PNIPAAm chain length. The TGA analysis shows a one-step degradation and a lower thermal stability of the triblock copolymer than the PNIPAAm. The DSC analysis of the triblock copolymer shows the lowering of glass transition temperature (T g), and melting temperature (T m) peaks possibly due to the partial miscibility of the poly (ε-caprolactone) (PCL) block with the amorphous PNIPAAm block through the interaction of ester groups of PCL with the amide groups of PNIPAAm. The XRD pattern of the triblock copolymer shows a broad peak due to the suppression of the crystallization of PCL block owing to the mixing of PNIPAAm block with the PCL block.  相似文献   

5.
A series of block copolymers comprising poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) end‐functionalized with a quaternary ammonium group (RQ) was synthesized by free‐radical polymerization of N‐isopropylacrylamide with well‐defined RQPEO macroazoinitiators. The radical termination occurred mainly by disproportionation, as confirmed by combining the data from size exclusion chromatography (SEC) and rheology measurements. The copolymers denoted RQExNy differ in type of the terminal group [FQ = C8F17(CH3)2N+ or MQ = (CH3)3N+] and in the length of the PEO (Ex; x = 4, 6, or 10 K) and PNIPAM (Ny; y = 7 or 17–19 K) blocks. The type of the terminal group determined the behavior of the block copolymers in the dilute and semidilute regime. Self‐assembled species formed by both FQ and MQ modified block copolymers were detected by static light scattering measurements at 25 °C and above the lower critical solution temperature (LCST). The LCST of the block copolymers depended on the type of the RQ group and the length of the blocks. FQ‐modified copolymers form elastic gels below and above the LCST. It was inferred that the FQ groups and the PNIPAM blocks form segregated microdomains that serve as junctions to maintain a viscoelastic network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5736–5744, 2004  相似文献   

6.
The sol–gel transition mechanism of a thermoreversible hydrogel composed of a copolymer comprising poly(N-isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm–PEG) was studied by NMR. The 1H– and 13C–NMR spectra measured on a PNIPAAm–PEG solution in 99.9% D2O showed a remarkable line width broadening of the PNIPAAm block of more than that of the PEG block, during thermally induced hydrogel formation. This result suggested that the mobility of the PNIPAAm block is more restricted than that of the PEG block during gelation. A crosslinked polymer network formation was ascertained by a sudden reduction in the spin-lattice relaxation time (T1) of the residual HDO proton during gelation. The temperature dependency of the T1 values for the PNIPAAm and PEG blocks revealed that the microscopic condition of the PNIPAAm block in water was drastically changed during gelation, while that of the PEG block was unchanged. The experimental results from NMR supported the following gelation mechanism; that an aggregation of PNIPAAm blocks in the separate copolymers caused by hydrophobic interaction forms crosslinking points to give an infinite three-dimensional network structure. The hydrated PEG chains in the copolymers provide the network with a swelling property in water, and prevent the aggregation from causing a macroscopic phase separation.  相似文献   

7.
Polymethyl methacrylate (PMMA) polymer chains were grafted on neoprene W (NW) by a one-step ATRP reaction. The thermal properties of the products were analyzed by DSC. Improvement of T g was a result of the PMMA grafted chains. Also, the melting point (T m ) changed from 42°C for NW to 142°C for modified NW. Using different solvents for the resulting copolymers, aggregates were obtained. Phase separation was influenced by the grafting degree of PMMA and the employed solvent. The copolymers were analyzed by GPC, FT-IR, DSC, and SEM.  相似文献   

8.
Polypropylene-block-poly(methyl methacrylate) (PP-b-PMMA) and Polypropylene-block-poly(N-isopropylacryramide) (PP-b-PNIPAAm) block copolymers were successfully synthesized by radical polymerizations of MMA or NIPAAm with polypropylene (PP) macroinitiators. Polypropylene macroinitiators were prepared by a series of end functionalization of pyrolysis PP via hydroalumination, oxidation and esterification reactions. The PP macroinitiators thus obtained could initiate radical polymerizations of MMA or NIPAAm by using transition metal catalyst systems, and 1H NMR analysis and gel permeation chromatography measurement confirmed the formation of PP-b-PMMA and PP-b-PNIPAAm block copolymers. In addition, the length of the incorporated PMMA or PNIPAAm segments in these block copolymers was controllable by the feed ratio between the monomer and the PP macroinitiator, and their molecular weights were estimated to be 35700 and 68700 (PMMA) and 1760 and 13300 (PNIPAAm), respectively. Transmission electron microscopy of the polymers obtained by NIPAAm polymerization revealed specific morphological features that reflected the difference of PNIPAAm segment length. The text was submitted by the authors in English.  相似文献   

9.
Poly(butylene/diethylene succinate) block copolymers (PBSPDGS), prepared by reactive blending of the parent homopolymers (PBS and PDGS) in the presence of Ti(OBu)4, were analyzed by 1H-NMR, TGA and DSC, in order to investigate the effects of the transesterification reactions on the molecular structure and thermal properties. 1H-NMR analysis evidenced the formation of copolymers whose degree of randomness increases with the mixing time. The thermal analysis of the melt-quenched samples showed that the melting peak, due to the crystalline phase of PBS, tends to disappear with increasing mixing time and therefore with decreasing the block length in the copolymers. As concern miscibility, a single homogeneous amorphous phase always occurred, independently on block length. Nevertheless, a phase separation, due to the tendency of the PBS blocks to crystallize, was evidenced in the copolymers with long butylene succinate sequences. The results obtained indicated that the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the block copolymers.  相似文献   

10.
A polylactide (D,L-PLA) macroRAFT agent was prepared by utilizing a hydroxyl-functional trithiocarbonate as a coinitiator for the ring-opening polymerization. The length of the resultant polymer was controlled by the concentration of the coinitiator leading to the formation of two PLA polymers with M(n) = 12500 g mol(-)(1) (PDI = 1.46) and M(n) = 20500 g mol(-)(1) (PDI = 1.38) each with omega-trithiocarbonate functionality. Chain extension of PLA via the RAFT (free radical) polymerization of N-isopropyl acrylamide (NIPAAm) resulted in the formation of amphiphilic block copolymers with the PNIPAAm block increasing in size with conversion. TEM measurements of the aggregates obtained by self-organization of the block copolymers in aqueous solutions indicated the formation of vesicles. The sizes of these aggregates were influenced by the ratio of both blocks and the molecular weight of each block. The lower critical solution temperature (LCST) of the block copolymer was largely unaffected by the size of each block. UV turbidity measurements indicated a higher LCST for the block copolymers than for the corresponding PNIPAAm homopolymers. Stabilization of the vesicles was attained by a cross-linking chain extension of the PNIPAAm block using hexamethylene diacrylate. As the trithiocarbonate group was located between the PLA and PNIPAAm blocks, the chain extension resulted in a cross-linked layer between the core and corona of the vesicles.  相似文献   

11.
The impact of the molecular architecture on the transfection efficiency of PEGylated poly(amino acid) block copolymers was investigated for PEG‐b‐p(l ‐Lys)x‐b‐p(l ‐Leu)y, PEG‐b‐p(l ‐Leu)x‐b‐p(l ‐Lys)y, and PEG‐b‐p((l ‐Leu)x‐co‐(l ‐Lys)y). The block lengths of p(l ‐Lys) and p(l ‐Leu) were varied between 10, 20, and 40; and 10 and 20, respectively, to study the influence of the ionic/hydrophobic balance. The results show that ABC triblock copolymers form smaller and more stable polyplexes with plasmid DNA than AB diblock copolymers—as verified by long‐term aggregation and ethidium bromide exclusion studies—protect the DNA more effectively against nucleases, and provide better transfection efficiencies, as indicated by total protein as well as luciferase expression. More detailed studies revealed that triblock copolymers with p(l ‐Leu) forming the C‐block were most efficient in DNA complexation with a 2.3 times higher transfection rate. Furthermore, increasing the cationic character by increasing the p(l ‐Lys) chain length led to up to 25% higher transfection but at the same time induced some cytotoxicity. Diblock copolymers, where the amino acid–building blocks exist as a random copolymer, bind more loosely with DNA leading to less compact and less stable aggregates with lower transfection efficiencies.  相似文献   

12.
Block copolymers demonstrate excellent thermal and mechanical properties superior to their corresponding random copolymers and homopolymers. However, it is difficult to synthesize block copolymers comprising of different polyester segments by copolycondensation due to the serious transesterification reaction. In this study, multiblock copolymers comprising of two different polyester segments, i.e. crystallizable poly(butylene succinate) (PBS) and amorphous poly(1,2‐propylene succinate) (PPSu), were synthesized by chain‐extension with hexamethylene diisocyanate (HDI). Amorphous PPSu segment was incorporated to improve the impact strength of PBS. The copolymers were characterized by GPC, laser light scattering (LLS), NMR, DSC, and mechanical testing. The results of 13C NMR spectra suggest that multiblock copolymers with regular sequential structure have been successfully synthesized. The data of DSC and mechanical testing indicate that block copolymers possess excellent thermal and mechanical properties with satisfactory tensile strength and extraordinary impact strength achieving upto 1900% of pure PBS. The influence of PPSu ratio and chain length of both the segments on the thermal and mechanical properties was investigated. The incorporation of an amorphous soft segment PPSu imparts high‐impact resistance to the copolymers without obviously decreasing the melting point (Tm). The favorable mechanical and thermal properties of the copolymers also depend on their regular sequential structure. At the same time, the introduction of amorphous PPSu segment enhances the enzymatic degradation rate of the multiblock copolymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Rod–coil amphiphilic diblock copolymers, consisting of oligo(p‐phenylenevinylene) (OPV) as a rod and hydrophobic block and poly(ethylene oxide) (PEO) as a coil and hydrophilic block, were synthesized by a convergent method. The aggregation behavior of the block copolymers in a selective solvent (tetrahydrofuran/H2O) was probed with the absorption and emission of the OPV block. With increasing H2O concentration, the absorption maximum was blueshifted, the emission from the molecularly dissolved OPV decreased, and that from the aggregated OPV increased. This indicated that the OPV blocks formed H‐type aggregates in which the OPV blocks aligned in a parallel orientation with one another. The transmission electron microscopy observation revealed that the block copolymers with PEO weight fractions of 41 and 62 wt % formed cylindrical aggregates with a diameter of 6–8 nm and a length of several hundreds nanometers, whereas the block copolymer with 79 wt % PEO formed distorted spherical aggregates with an average diameter of 13 nm. Furthermore, the solubilization of an OPV homooligomer with the block copolymer was studied. When the total polymer concentration was less than 0.1 wt %, the block copolymer solubilized OPV with a 50 mol % concentration. The structure of the aggregates was a cylinder with a relatively large diameter distribution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1569–1578, 2005  相似文献   

14.
Novel polyfunctional macroinitiators for atom transfer radical polymerization (ATRP) were obtained via esterification of hyperbranched polyglycerol (PG) (Mn = 4 770 g/mol, Mw/Mn = 1.5) with 2‐bromoisobutyryl bromide. Such macroinitiators were used in the presence of CuBr/pentamethyldiethylenetriamine (PMDETA) to initiate methyl acrylate (MA) polymerization, resulting in multi‐arm block copolymers with polyether core and 45–55 PMA arms. PMA arm length was controlled via monomer/initiator ratio and conversion (< 35%). Polymers were characterized by 1H NMR, 13C NMR, SEC, membrane osmometry and DSC.  相似文献   

15.
Poly(ethylene glycol) (PEG) is often used to biocompatibilize surfaces of implantable biomedical devices. Here, block copolymers consisting of PEG and l ‐cysteine‐containing poly(amino acid)s (PAA's) were synthesized as polymeric multianchor systems for the covalent attachment to gold surfaces or surfaces decorated with gold nanoparticles. Amino‐terminated PEG was used as macroinitiator in the ring‐opening polymerization, (ROP), of respective amino acid N‐carboxyanhydrides (NCA's) of l ‐cysteine (l ‐Cys), l ‐glutamate (l ‐Glu), and l ‐lysine (l ‐Lys). The resulting block copolymers formed either diblock copolymers, PEG‐b‐p(l ‐Gluxcol ‐Cysy) or triblock copolymers, PEG‐b‐p(l ‐Glu)xb‐p(l ‐Cys)y. The monomer feed ratio matches the actual copolymer composition, which, together with high yields and a low polydispersity, indicates that the NCA ROP follows a living mechanism. The l ‐Cys repeat units act as anchors to the gold surface or the gold nanoparticles and the l ‐Glu repeat units act as spacers for the reactive l ‐Cys units. Surface analysis by atomic force microscopy revealed that all block copolymers formed homogenous and pin‐hole free surface coatings and the phase separation of mutually immiscible PEG and PAA blocks was observed. A different concept for the biocompatibilization of surfaces was followed when thiol‐terminated p(l ‐Lys) homopolymer was first grafted to the surface and then covalently decorated with HOOC‐CH2‐PEG‐b‐p(Bz‐l ‐Glu) polymeric micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 248–257  相似文献   

16.
Supramolecular block‐random copolymers containing [Ir(terpy)2]3+ in the side chain were synthesized via postfunctionalization of a P(S‐b‐ACterpy) block copolymer. Absorbance and emission spectra compared to a model compound show that the polymer backbone has a minor effect on the polymer absorbance but produces a larger shift for the phosphorescence signals to higher wavelength. Dynamic light scattering of the metal complex containing copolymer studied in various solvents showed monomodal aggregation with decreasing aggregate size as the solvent dielectric constant increased. The copolymer precursor P(S‐b‐ACterpy) shows multimodal aggregation in different solvents with the major population consisting of single chains. This difference in behavior between the two polymers is attributed to the electrolytic nature of the complex and the amphiphilicity induced by the charged metal complex. Supramolecular copolymers like these will continue to have interesting self‐organizational properties and may find applications in multicomponent systems for photoinduced charge separation processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1109–1121, 2007  相似文献   

17.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

18.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

19.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

20.
Model diblock copolymers of poly(1,4‐butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS, were synthesized by the sequential anionic polymerization (high vacuum techniques) of butadiene and hexamethylciclotrisiloxane (D3) in the presence of sec‐BuLi. By homogeneous hydrogenation of PB‐b‐PDMS, the corresponding poly(ethylene) and poly(dimethylsiloxane) block copolymers, PE‐b‐PDMS, were obtained. The synthesized block copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR), size‐exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and rheology. SEC combined with 1H NMR analysis indicates that the polydispersity index of the samples (Mw/Mn) is low, and that the chemical composition of the copolymers varies from low to medium PDMS content. According to DSC and TGA experiments, the thermal stability of these block copolymers depends on the PDMS content, whereas TEM analysis reveals ordered arrangements of the microphases. The morphologies observed vary from spherical and cylindrical to lamellar domains. This ordered state (even at high temperatures) was further confirmed by small‐amplitude oscillatory shear flow tests. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1579–1590, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号