首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of CH(3)C(O)CH(2)O(2) with HO(2) has been studied at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/acetone/methanol/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)CH(2)O, OH and O(2) () was investigated in experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The observed prompt formation of phenol under conditions when CH(3)C(O)CH(2)O(2) reacts mainly with HO(2) indicates that this reaction proceeds partially by channel , which forms OH both directly and indirectly, by virtue of secondary generation of CH(3)C(O)O(2) (from CH(3)C(O)CH(2)O) and its reaction with HO(2) (). The secondary generation of OH radicals was confirmed by the observed formation of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel ). A number of delayed sources of OH also contribute to the observed phenol formation, such that full characterisation of the system required simulations using a detailed chemical mechanism. The dependence of the phenol and CH(3)C(O)OOH yields on the initial peroxy radical precursor reagent concentration ratio, [methanol](0)/[acetone](0), were well described by the mechanism, consistent with a small but significant fraction of the reaction of CH(3)C(O)CH(2)O(2) with HO(2) proceeding via channel . This allowed a branching ratio of k(3b)/k(3) = 0.15 +/- 0.08 to be determined. The results therefore provide strong indirect evidence for the participation of the radical-forming channel of the title reaction.  相似文献   

2.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

3.
4.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

5.
6.
Ab initio density functional and molecular orbital calculations provide singlet and triplet electronic potential energy surfaces for the reactions of CF3CH2I+O(3P) leading to OI and HF eliminations, reactions which have been the subject of recent experimental studies. A barrier to OI formation occurs on the triplet potential energy surface; there is no reverse barrier to OI formation on the singlet pathway. Findings suggest that two competing pathways may form HF. One is an addition-insertion-elimination process involving insertion of O into the C-I bond. The alternate path involves OI elimination, addition of an O atom to CF3CH2, and subsequent HF elimination. The computed reactant pathways and energetics are discussed in relation to recent experiments.  相似文献   

7.
The gas phase reaction kinetics of OH with three di‐amine rocket fuels—N2H4, CH3NHNH2, and (CH3)2NNH2—was studied in a discharge flow tube apparatus and a pulsed photolysis reactor under pseudo‐first‐order conditions in [OH]. Direct laser‐induced fluorescence monitoring of the [OH] temporal profiles in a known excess of the [diamine] yielded the following absolute second‐order OH rate coefficient expressions; k1 = (2.17 ± 0.39) × 10?11 e(160±30)/T, k2 = (4.59 ± 0.83) × 10?11 e(85±35)/T and k3 = (3.35 ± 0.60) × 10?11 e(175±25)/T cm3 molec?1 s?1, respectively, for reactions with N2H4, CH3NHNH2 and (CH3)2NNH2 in the temperature range 232–637 K. All three reactions did not show any discernable pressure dependence on He or N2 buffer gas pressure of up to 530 torr. The magnitude of the weak temperature and the lack of pressure effects of the OH + N2H4 reaction rate coefficient suggest that a simple direct metathesis of H‐atom may not be important compared to addition of the OH to one of the N‐centers of the diamine skeleton, followed by rapid dissociation of the intermediate into products. Our findings on this reaction are qualitatively consistent with a previous ab initio study [ 3 ]. However, in the alkylated diamines, direct H‐abstraction from the methyl moiety cannot be completely ruled out. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 354–362, 2001  相似文献   

8.
We have developed a dual-beam tunable diode laser absorption spectroscopy system to follow the cocondensation of water and ethanol in a supersonic Laval nozzle. We determine the D(2)O monomer concentration in the vapor phase by fitting a Voigt profile to the measured line shape but had to develop a calibration scheme to evaluate the C(2)H(5)OD monomer concentration. To measure the temperature of the gas, we seed the flow with CH(4) and measure two absorption lines with different lower state energies. These data give a far more detailed picture of binary condensation than axially resolved pressure measurements. In particular, we observe that the C(2)H(5)OD monomer starts to be depleted from the gas phase well before D(2)O begins to condense.  相似文献   

9.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

10.
The structural and spectroscopic changes in complexes of FCCKrH...Y and FKrCCH...Y (Y = BF, CO, N(2), OH(2), OH(CH(3)), O(CH(3))(2)) were computed at the MP2∕6-31++G(d,p) level of theory and compared with the corresponding properties for FCCH...Y. The computed bond length changes and frequency shifts on complexation were rationalized by comparing with a perturbation model, which gives quantitative agreement with the standard ab initio results. A recently proposed model also gives a reasonable qualitative account of the observed trends in these complexes.  相似文献   

11.
12.
The purpose of this article was to calculate the structures and energetics of CH3O(H2O)n and CH3S(H2O)n in the gas phase; the maximum number of water molecules that can directly interact with the O of CH3O; and when n is larger, we asked how the CH3O and CH3S moiety of CH3O(H2O)n and CH3S(H2O)n changes and how we can reproduce experimental ΔH 0n−1, n. Using the ab initio closed-shell self-consistent field method with the energy gradient technique, we carried out full geometry optimizations with the MP2/aug-cc-pVDZ for CH3O(H2O)n (n=0, 1, 2, 3) and the MP2/6–31+G(d,p) (for n=5, 6). The structures of CH3S(H2O)n (n=0, 1, 2, 3) were fully optimized using MP2/6–31++G(2d,2p). It is predicted that the CH3O(H2O)6 does not exist. We also performed vibrational analysis for all clusters [except CH3O(H2O)6] at the optimized structures to confirm that all vibrational frequencies are real. Those clusters have all real vibrational frequencies and correspond to equilibrium structures. The results show that the above maximum number of water molecules for CH3O is five in the gas phase. For CH3O(H2O)n, when n becomes larger, the C—O bond length becomes longer, the C—H bond lengths become smaller, the HCO bond angles become smaller, the charge on the hydrogen of CH3 becomes more positive, and these values of CH3O(H2O)n approach the corresponding values of CH3OH with the n increment. The C—O bond length of CH3O(H2O)3 is longer than the C—O bond length of CH3O in the gas phase by 0.044 Å at the MP2/aug-cc-pVDZ level of theory. The structure of the CH3S moiety in CH3S(H2O)n does not change with the n increment. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1138–1144, 1999  相似文献   

13.
14.
The "reaction force" F(R(c)) is the negative derivative of a system's potential energy V(R(c)) along the intrinsic reaction coordinate of a process. If V(R(c)) goes through a maximum, as is commonly the case, then F(R(c)) has a characteristic profile: a negative minimum followed by zero at the transition state and then a positive maximum. These features reflect four phases of the reaction: an initial one of reactant preparation, followed by two of transition to products, and then relaxation of the latter. In this study, we have analyzed, in these terms, a gas-phase S(N)2 substitution, selected to be CH3Cl + H2O --> CH3OH + HCl. We examine, at the B3LYP/6-31G level, the geometries, energetics, and molecular surface electrostatic potentials, local ionization energies, and internal charge separation.  相似文献   

15.
In N,N′‐di‐tert‐butyl‐N′′,N′′‐dimethylphosphoric triamide, C10H26N3OP, (I), and N,N′,N′′,N′′′‐tetra‐tert‐butoxybis(phosphonic diamide), C16H40N4O3P2, (II), the extended structures are mediated by P(O)...(H—N)2 interactions. The asymmetric unit of (I) consists of six independent molecules which aggregate through P(O)...(H—N)2 hydrogen bonds, giving R21(6) loops and forming two independent chains parallel to the a axis. Of the 12 independent tert‐butyl groups, five are disordered over two different positions with occupancies ranging from to . In the structure of (II), the asymmetric unit contains one molecule. P(O)...(H—N)2 hydrogen bonds give S(6) and R22(8) rings, and the molecules form extended chains parallel to the c axis. The structures of (I) and (II), along with similar structures having (N)P(O)(NH)2 and (NH)2P(O)(O)P(O)(NH)2 skeletons extracted from the Cambridge Structural Database, are used to compare hydrogen‐bond patterns in these families of phosphoramidates. The strengths of P(O)[...H—N]x (x = 1, 2 or 3) hydrogen bonds are also analysed, using these compounds and previously reported structures with (N)2P(O)(NH) and P(O)(NH)3 fragments.  相似文献   

16.
17.
The vapor phase structure of (CH3O)2S [1] has been investigated by electron diffraction and ab initio MO calculations, which both result in a C2 symmetry for the most stable geometry, the Cs conformer being less stable by about 12 kJ/mol. The torsional barrier for rotation about one SO bond was calculated as 37 kJ/mol (trans barrier). The geometrical parameters (electron diffraction) of the C2 conformer are: dSO = 162.5(2), dCO = 142.6(3), dCH = 110.5(7) pm angles OSO = 103(1)°, SOC = 115.9(4)°, HCH = 109(1)°, torsional angle COSO = 84(3)°. Geometrical data calculated with 6-31G* basis set agree well with the diffraction data; calculated dipole moments 1.1 D (C2) and 3.3 D (Cs). The infrared spectrum of gaseous (CH3O)2S and the Raman spectra of liquid and solid (CH3O)2S are reported and have been almost fully assigned to the 27 fundamental vibrations.  相似文献   

18.
The visible absorption spectrum of the acetyl radical, CH(3)CO, was measured between 490 and 660 nm at 298 K using cavity ring-down spectroscopy. Gas-phase CH(3)CO radicals were produced using several methods including: (1) 248 nm pulsed laser photolysis of acetone (CH(3)C(O)CH(3)), methyl ethyl ketone (MEK, CH(3)C(O)CH(2)CH(3)), and biacetyl (CH(3)C(O)C(O)CH(3)), (2) Cl + CH(3)C(O)H --> CH(3)C(O) + HCl with Cl atoms produced via pulsed laser photolysis or in a discharge flow tube, and (3) OH + CH(3)C(O)H --> CH(3)CO + H(2)O with two different pulsed laser photolysis sources of OH radicals. The CH(3)CO absorption spectrum was assigned on the basis of the consistency of the spectra obtained from the different CH(3)CO sources and agreement of the measured rate coefficients for the reaction of the absorbing species with O(2) and O(3) with literature values for the CH(3)CO + O(2) + M and CH(3)CO + O(3) reactions. The CH(3)CO absorption spectrum between 490 and 660 nm has a broad peak centered near 535 nm and shows no discernible structure. The absorption cross section of CH(3)CO at 532 nm was measured to be (1.1 +/- 0.2) x 10(-19) cm(2) molecule(-1) (base e).  相似文献   

19.
Nucleophilic substitution reactions of the monosubstituted anions [B12H11X]2–, where X = OC(O)CH3, OH, SCN, and I, with pentanoic acid were studied. The obtained compounds were shown to contain the [B12H10X{OC(O)(CH2)3CH3}]2– anions.  相似文献   

20.
《Chemical physics letters》1987,139(6):513-518
Flash photolysis kinetic absorption spectroscopy was used to investigate the gas phase reaction between hydroperoxy (HO2) and methylperoxy (CH3O2) radicals at 298 K. Due to the large difference between the self-reactivities of the two radicals, first- or second-order kinetic conditions could not be maintained for either species. Thus, the rate constant for the cross reaction was determined from computer-modeled fits of the radical absorption decay curves, at wavelengths between 215 and 280 nm. This procedure yielded k = 2.9 × 10−12 cm3 molecule−1 s−1 independent of total pressure (using N2) between 25 and 600 Torr, and of the partial pressure of water vapor (up to 11.6 Torr). There was also no effect of water vapor on the rate constant for the self-reaction of methylperoxy radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号