首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 °C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ(T) and S(T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed.  相似文献   

2.
The thermoelectric effect of magnesium silicide is studied by using a thermodynamical method in the presence of an electric field. The thermoelectric potential is evaluated from the partial derivative of free energy with respect to charge in which the free energy is calculated at the B3LYP/6-31G(d,p) level of density functional theory. This free energy is also utilized to determine the average dipole moment from which the polarizability, alpha; molar polarization, Psi; and dielectric constant can be computed. The present calculation for the dielectric constant (approximately 24-20) is in very good agreement with the experimental value (20). This accurate dielectric constant can be used to derive the relation of the thermoelectric potential with respect to temperature, from which the thermoelectric power or the Seebeck coefficients are calculated. The present result shows good agreement with experiment measurement for the Seebeck coefficients. In comparison, that calculation from the energy band structure theory is far off from the experimental values.  相似文献   

3.
Recent experiments have revealed that the p-type BiCuSeO-based oxychalcogenides compounds exhibit a high thermoelectric figures of merit due to their very low lattice thermal conductivities and moderate Seebeck coefficient in the medium temperature range. In the present work, we reported on the optoelectronic and thermoelectric properties using the full potential linear augmented plane wave method and modified Becke-Johnson potential with spin-orbit coupling. The properties show that the BiCuSeO-based oxychalcogenides exhibit a semiconductor behavior with band gap values of 0.51, 0.45 and 0.41 eV for BiCuSO, BiCuSeO, and BiCuTeO, respectively. Due to their prominent role for thermoelectric applications, we combined Boltzmann transport theory to DFT results to compute the transport properties, mainly electronic conductivity, thermal conductivity, Seebeck coefficient and power factor. The present results show the dominance of BiCuTeO for thermoelectric application compared to the BiCuSO and BiCuSeO.  相似文献   

4.
Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.  相似文献   

5.
We prepared poly(2,2′–bithiophene) (PBT) on top of Au and indium-tin oxide (ITO) bottom electrodes and determined the Seebeck coefficient in devices with Al top electrode. Negative Seebeck coefficient was observed in ITO/PBT/Al devices, whereas Au/PBT/Al devices showed positive Seebeck coefficient. This difference allowed the construction of a complete thermoelectric thin film generator with top electrode of Al and bottom electrode of ITO and Au (each one at half of the electrode area) in a single organic layer deposition step. The thermoelectric generator achieves ca. 800 μV K?1 at room temperature, which is a very high value for conjugated polymer-based devices.  相似文献   

6.
Thermoelectric has long been recognized as a potentially transformative energy conversion technology due to its ability to convert heat directly into electricity. However, how to optimize the three interdependent thermoelectric parameters (i.e., electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ) for improving thermoelectric properties is still challenging. Here, we put forward for the first time the semiconductor-superionic conductor phase transition as a new and effective way to selectively optimize the thermoelectric power factor based on the modulation of the electric transport property across the phase transition. Ultra low value of thermal conductivity was successfully retained over the whole investigated temperature range through the reduction of grain size. As a result, taking monodisperse Ag(2)Se nanocrystals for an example, the maximized ZT value can be achieved around the temperature of phase transition. Furthermore, along with the effective scattering of short-wavelength phonons by atomic defects created by alloying, the alloyed ternary silver chalcogenide compounds, monodisperse Ag(4)SeS nanocrystals, show better ZT value around phase transition temperature, which is cooperatively contributed by superionic phase transition and alloying at nanoscale.  相似文献   

7.
Thermoelectric energy conversion technology to convert waste heat into electricity has received much attention. In addition, metal oxides have recently been considered as thermoelectric power generation materials that can operate at high temperatures on the basis of their potential advantages over heavy metallic alloys in chemical and thermal robustness. We have fabricated high-quality epitaxial films composed of oxide thermoelectric materials that are suitable for clarifying the intrinsic "real" properties. This review focuses on the thermoelectric properties of two representative oxide epitaxial films, p-type Ca 3Co 4O 9 and n-type SrTiO 3, which exhibit the best thermoelectric figures of merit, ZT (= S (2)sigma Tkappa (-1), S = Seebeck coefficient, sigma = electrical conductivity, kappa = thermal conductivity, and T = absolute temperature) among oxide thermoelectric materials reported to date. In addition, we introduce the recently discovered giant S of two-dimensional electrons confined within a unit cell layer thickness ( approximately 0.4 nm) of SrTiO 3.  相似文献   

8.
The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT=S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. We have prepared the thermoelectric generator device of SiO2/SiO2+Ge multilayer superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ion bombardments have been performed using the AAMU Pelletron ion beam accelerator at five different fluences to make quantum structures (nanodots and/or nanoclusters) in the multilayer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after MeV Si ions bombardments at the different fluences we have measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity, Raman spectra to get some information about the sample structure and bond structures among the used elements in the superlattice thin film systems.  相似文献   

9.
A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.  相似文献   

10.
Spark plasma sintering method was applied to prepare bulk n-type Bi1.9Lu0.1Te2.7Se0.3 samples highly textured along the 001 direction parallel to the pressing direction. The texture development is confirmed by X-ray diffraction analysis and scanning electron microscopy. The grains in the textured samples form ordered lamellar structure and lamellar sheets lie in plane perpendicular to the pressing direction. The average grain size measured along the pressing direction is much less as compared to the average grain size measured in the perpendicular direction (∼50 nm against ∼400 nm). A strong anisotropy in the transport properties measured along directions parallel and perpendicular to the pressing direction within the 290 ÷ 650 K interval was found. The specific electrical resistivity increases and the thermal conductivity decreases for the parallel orientation as compared to these properties for the perpendicular orientation. The Seebeck coefficient for both orientations is almost equal. Increase of the electrical resistivity is stronger than decrease of the thermal conductivity resulting in almost three-fold enhancement of the thermoelectric figure-of-merit coefficient for the perpendicular orientation (∼0.68 against ∼0.24 at ∼420 K). The texturing effect can be attributed to (i) recovery of crystal structure anisotropy typical for the single crystal Bi2Te3-based alloys and (ii) grain boundary scattering of electrons and phonons. An onset of intrinsic conductivity observed above Td ≈ 410 K results in appearance of maxima in the temperature dependences of the specific electrical resistivity, the Seebeck coefficient and the thermoelectric figure-of-merit coefficient and minimum in the temperature dependence of the total thermal conductivity. The intrinsic conductivity is harmful for the thermoelectric efficiency enhancement since thermal excitation of the electron-hole pairs reduces the Seebeck coefficient and increases the thermal conductivity.  相似文献   

11.
We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate‐II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate‐II polytypes is ten times smaller than the difference between the experimentally known 3C‐Ge (α‐Ge) and 4H‐Ge polytypes. The thermoelectric properties of guest‐occupied clathrate‐II structures were investigated for compositions Na–Rb–Ga–Ge and Ge–As–I. The clathrate‐II structures show promising thermoelectric properties and the highest Seebeck coefficients and thermoelectric power factors were predicted for the 3C polytype. The structural anisotropy of the largest studied hexagonal polytypes affects their thermoelectric power factors by over a factor of two.  相似文献   

12.
Itaka  K.  Minami  H.  Kawaji  H.  Wang  Q.  Nishii  J.  Kawasaki  M.  Koinuma  H. 《Journal of Thermal Analysis and Calorimetry》2002,69(3):1051-1058
We have developed a multi-channel measurement system for combinatorial investigation of thermoelectric materials. The measurement apparatus has ten series of pin-probe array which enables us to measure the Seebeck coefficient and electric conductivity of 10 samples simultaneously. A successful measurement on a composition-spread thin films library indicated that this measurement system is highly useful for the high-speed exploration of thermoelectric materials by combinatorial approach. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Hybrid organic–inorganic materials have been considered as a new candidate in the field of thermoelectric materials since the last decade owing to their great potential to enhance the thermoelectric performance by utilizing the low thermal conductivity of organic materials and the high Seebeck coefficient, and high electrical conductivity of inorganic materials. Herein, we provide an overview of interfacial engineering in the synthesis of various organic–inorganic thermoelectric hybrid materials, along with the dimensional design for tuning their thermoelectric properties. Interfacial effects are examined in terms of nanostructures, physical properties, and chemical doping between the inorganic and organic components. Several key factors which dictate the thermoelectric efficiency and performance of various electronic devices are also discussed, such as the thermal conductivity, electric transportation, electronic band structures, and band convergence of the hybrid materials.  相似文献   

14.
在N2气保护下,采用电磁感应法制备了添加La的Bi2Te3和Bi0.5Sb1.5Te3。运用X射线粉末衍射、电感耦合等离子光谱和扫描电子显微镜对材料的物相成分和形貌进行了表征。研究了La对Bi2Te3和Bi0.5Sb1.5Te3热电材料的电导率(σ)、Seebeck系数(S)和热导率(κ)的影响。实验结果表明,添加La明显降低了2种材料的热导率,提高了热电优值(ZT),添加La的Bi0.5Sb1.5Te3的热电优值在室温超过了1。  相似文献   

15.
La(Co, Cu)O(3-δ) ceramics were prepared by pressureless sintering of citrate precursor powders, and their thermoelectric properties were investigated with an emphasis on the influence of Cu doping and phase structure as well as microstructure. It was found that a secondary phase first appeared in the form of a network along the grain boundaries and then changed to dispersion with increasing Cu content, which effectively reduced the lattice thermal conductivity of the materials. The thermal conductivity was only 1.21 W m(-1) K(-1) for the sample LaCo(0.75)Cu(0.25)O(3-δ), being much lower as for the thermoelectric oxide materials. In addition, a small amount of Cu substitution for Co increased the electrical conductivity greatly and the absolute Seebeck coefficient, whose sign was also reversed from negative to positive. The dimensionless figure of merit, ZT, of LaCoO(3-δ) oxides at low and middle temperatures can be remarkably enhanced by substituting Co with Cu.  相似文献   

16.
An efficient route to construct a three-dimensional crystal structure is stacking of two-dimensional building blocks (2D-BBs). The crystal structures of potential thermoelectric compounds REOZnSb (RE = La, Ce, Pr, Nd) were virtually constructed from insulating [REO] and conducting [ZnSb] layers. Further optimizations performed by means of first-principles calculations show that REOZnSb should exhibit semimetal or narrow band-gap semiconductor behaviors, which is a prerequisite for high thermoelectric efficiency. The analysis of the electron localizability indicator for LaOZnSb reveals mostly covalent polar interactions between all four kinds of atoms. The electron density yields completely balanced ionic-like electronic formula La(1.7+)O(1.2-)Zn(0.4+)Sb(0.9-). Furthermore, the samples of REOZnSb have been synthesized via solid-state reaction, and their crystal structures were confirmed by powder X-ray diffraction. The differences in cell parameters between the theoretically optimized and the experimental values are smaller than 2%. The temperature dependence of the magnetic susceptibility shows that LaOZnSb is diamagnetic above 40 K, whereas CeOZnSb, PrOZnSb and NdOZnSb are Curie-Weiss-type paramagnets. Electrical conductivity and Seebeck effect measurements indicate that REOZnSb are p-type semiconductors. A considerably high Seebeck coefficient and low thermal conductivity were obtained for pure LaOZnSb, but its low electrical conductivity leads to a small ZT. The high adjustability of the crystal structure as well as properties by optimization of the chemical composition in the compounds REOZnSb provide good prospects for achieving high thermoelectric efficiency.  相似文献   

17.
Three different water based sol?Cgel methods were compared in the synthesis of Bi2Sr2Co1.8Ox thermoelectric ceramics. We chose methods that can stabilize a Bi3+ ion while solution and gel are formed: chelating method using combination of ethylenediamintetraacetic acid (EDTA) and triethanolamine (TEA) chelating agents and, further, synthesis using two different water soluble polymers??polyacrylamide or polyethylenimin. In each sol?Cgel process, we tested two gel decomposition atmospheres. The gels were decomposed either in air or in inert atmosphere (followed by treatment in pure oxygen). Additionally, a sample synthesized by solid state reaction was used for comparison with the sol?Cgel prepared samples. The grain size of precursors and also their phase composition were determined for methods used and different gels decomposition atmospheres. The sintered final samples did not differ in phase composition; on the other hand, they vary in volume density and microstructure. The differences were reflected in electric transport measurement (the temperature dependence of Seebeck coefficient, resistivity and thermal conductivity). The use of EDTA/TEA or PEI methods led to the samples with improved thermoelectric parameters in comparison to the solid state sample.  相似文献   

18.
采用溶胶凝胶及冷压方法,通过在Ca_3Co_(3.9)Cu_(0.1)O_(9-δ)体系中引入不同量的Ag~+或Yb~(3+)离子来调控体系的热电性能,制备了可在300~880 K下稳定存在且热电性能优良的陶瓷材料Ca_(3-x)Ag_xCo_(3.9)Cu_(0.1)O_(9-δ)(x=0.1,0.15,0.2,0.3)和Ca_(3-y)Yb_yCo_(3.9)Cu_(0.1)O_(9-δ)(y=0.05,0.1,0.2,0.3).通过X射线衍射(XRD)和扫描电子显微镜(SEM)等测试手段对产物进行了表征,结果显示所制备的样品纯度较高,晶粒均匀,晶粒间较致密.适量的Ag~+,Yb~(3+)离子取代Ca~(2+)离子固溶到晶体中使制备的双掺杂材料晶胞体积发生了变化,但并未引起晶体对称结构的变化.电阻率和Seebeck系数的表征结果说明双掺杂优化了载流子的浓度,随着温度的升高电阻率不断减小,Seebeck系数不断增大.经过计算可知Seebeck系数的增大还有电子有效质量的贡献.热导率表征结果显示双掺杂体系的热导率随着温度的升高而减小,其中声子热导依然起主要作用,这与单掺杂体系的结果一致.随着温度的升高,双掺杂样品Ca_(2.7)Ag_(0.3)Co_(3.9)Cu_(0.1)O_(9-δ)在880 K下ZT值达到最大,为0.2.  相似文献   

19.
Thermoelectric properties of Ni substituted (La) cobaltate compounds with perovskite structure have been investigated. For all the studied compounds the Seebeck coefficient is positive indicating predominant positive charge carriers. The electrical resistivity decreases considerably with increasing Ni content and with increasing temperature. The thermoelectric power factor was enhanced to 2.7 × 10−4 W/K2 m for samples with 10% Ni content at room temperature. The submicrograin morphology of the powders leads to a reduction of the thermal conductivity.  相似文献   

20.
The thermoelectric properties of parallel arrays of organic molecules on a surface offer the potential for large-area, flexible, solution processed, energy harvesting thin-films, whose room-temperature transport properties are controlled by quantum interference (QI). Recently, it has been demonstrated that constructive QI (CQI) can be translated from single molecules to self-assembled monolayers (SAMs), boosting both electrical conductivities and Seebeck coefficients. However, these CQI-enhanced systems are limited by rigid coupling of the component molecules to metallic electrodes, preventing the introduction of additional layers which would be advantageous for their further development. These rigid couplings also limit our ability to suppress the transport of phonons through these systems, which could act to boost their thermoelectric output, without comprising on their impressive electronic features. Here, through a combined experimental and theoretical study, we show that cross-plane thermoelectricity in SAMs can be enhanced by incorporating extra molecular layers. We utilize a bottom-up approach to assemble multi-component thin-films that combine a rigid, highly conductive ‘sticky’-linker, formed from alkynyl-functionalised anthracenes, and a ‘slippery’-linker consisting of a functionalized metalloporphyrin. Starting from an anthracene-based SAM, we demonstrate that subsequent addition of either a porphyrin layer or a graphene layer increases the Seebeck coefficient, and addition of both porphyrin and graphene leads to a further boost in their Seebeck coefficients. This demonstration of Seebeck-enhanced multi-component SAMs is the first of its kind and presents a new strategy towards the design of thin-film thermoelectric materials.

Through an experimental and theoretical study, cross-plane thermoelectricity in Self-Assembled Monolayers (SAMs) was enhanced by adding extra molecular layers, presenting a new strategy towards the design of high thermoelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号