首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The reaction of Ln(BH(4))(3)(THF)(3) or LnCl(3)(THF)(3) with 1 equiv of KCp*' ligand (Cp' = C(5)Me(4)n-Pr) afforded the new monocyclopentadienyl complexes Cp*'LnX(2)(THF)(n) (X = BH(4), Ln = Sm, n = 1, 1a, Ln = Nd, n = 2, 1b; X = Cl, Ln = Sm, n = 1, 3a) and [Cp*'LnX(2)](n') (X = BH(4), n' = 6, Ln = Sm, 2a, Ln = Nd, 2b; X = Cl, Ln = Nd, 4b). All these compounds were characterized by elemental analysis and (1)H NMR. Crystals of mixed borohydrido/chloro-bridged [Cp*'(6)Ln(6)(BH(4))(12-x))Cl(x)(THF)(n')] (x = 10, n' = 4, Ln = Sm, 2a', Ln = Nd, 2b'; x = 5, n = 2, Ln = Sm, 2a' ') were also isolated. Compounds 2a, 2b, 2a', 2b', and 2a' were structurally characterized; they all exhibit a hexameric structure in the solid state containing the [Cp*(3)Ln(3)X(5)(THF)] building block. The easy clustering of THF adducts first isolated is illustrative of the well-known bridging ability of the BH(4) group. Hexameric 2a was found to be unstable in the presence of THF vapors; this may be correlated to the opening of unsymmetrical borohydride bridges observed in the molecular structure.  相似文献   

2.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

3.
Hydrolysis of [NbCp'Cl(4)] (Cp' = η(5)-C(5)H(4)SiMe(3)) with the water adduct H(2)O·B(C(6)F(5))(3) afforded the oxo-borane compound [NbCp'Cl(2){O·B(C(6)F(5))(3)}] (2a). This compound reacted with [MgBz(2)(THF)(2)] giving [NbCp'Bz(2){O·B(C(6)F(5))(3)}] (2b), whereas [NbCp'Me(2){O·B(C(6)F(5))(3)}] (2c) was obtained from the reaction of [NbCp'Me(4)] with H(2)O·B(C(6)F(5))(3). Addition of Al(C(6)F(5))(3) to solutions containing the oxo-borane compounds [MCp(R)X(2){O·B(C(6)F(5))(3)}] (M = Ta, Cp(R) = η(5)-C(5)Me(5) (Cp*), X = Cl 1a, Bz 1b, Me 1c; M = Nb, Cp(R) = Cp', X = Cl 2a) afforded the oxo-alane complexes [MCp(R)X(2){O·Al(C(6)F(5))(3)}] (M = Ta, Cp(R) = Cp*, X = Cl 3a, Bz 3b, Me 3c; M = Nb, Cp(R) = Cp', X = Cl 4a), releasing B(C(6)F(5))(3). Compound 3a was also obtained by addition of Al(C(6)F(5))(3) to the dinuclear μ-oxo compound [TaCp*Cl(2)(μ-O)](2), meanwhile addition of the water adduct H(2)O·Al(C(6)F(5))(3) to [TaCp*Me(4)] gave complex 3c. The structure of 2a and 3a was obtained by X-ray diffraction studies. Density functional theory (DFT) calculations were carried out to further understand these types of oxo compounds.  相似文献   

4.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

5.
Redox transmetallation/ligand exchange reactions of lanthanoid metals (Ln), Hg(C6F5)2 and HOAr(OMe) (Ar(OMe) = C6H2-2,6-Bu(t)-4-OMe), in thf (tetrahydrofuran) gave, for Ln = Yb, [Yb(OAr(OMe))2(thf)3], and for Ln = Sm, a mixture of [Sm(II)(OAr(OMe))2(thf)3] and mainly [Sm(III)(Ar(OMe))3(thf)] x thf. X-Ray structure determinations show the divalent complexes to have distorted square-pyramidal stereochemistry with transoid thf and OAr(OMe) ligands in the basal plane. Treatment of [Yb(OAr(OMe))2(thf)3] with diethyl ether or PhMe at room temperature gave [Yb(OAr(OMe))2] or [Yb(OAr(OMe))2] x 0.5 PhMe. For lanthanoids Ln = Nd, Er or Y, the reactions with Hg(C6F5)2 and HOAr(OMe) yielded complex product mixtures, from one of which the novel erbium aryloxide fluoride cage [Er3(OAr(OMe))4(mu2-F)3(mu3-F)2(thf)4] x thf x 0.5 C6H14 was isolated. The cage core consists of a triangle of Er atoms joined to two mu3-fluoride ligands and three further mu2-fluorides bridge adjacent Er atoms. One of the Er atoms is six-coordinate with additionally two OAr(OMe) ligands whilst the other two have one OAr(OMe) and two thf ligands and are seven coordinate. Substitution of Hg(C6F5)2 by Hg(CCPh)2 in the redox transmetallation/ligand exchange reactions gave the new derivatives [Ln(OAr(OMe))3(thf)] x thf (Ln = La, Pr, Nd, Sm, Gd, Ho) in good yields whilst Ln = Yb gave [Yb(OAr(OMe))2(thf)3]. Recrystallisation of [Sm(OAr(OMe))3(thf)] x thf from dme (1,2-dimethoxyethane) yielded [Sm(OAr(OMe))3(dme)]. Structural characterisation of [Ln(OAr(OMe))3(thf)] x thf (Ln = Nd, Ho) and [Sm(OAr(OMe))3(dme)] showed monomeric four-coordinate distorted tetrahedral and five-coordinate distorted square-pyramidal complexes respectively. For the smaller lanthanoids Ln = Y, Er or Lu, reactions with Hg(CCPh)2 and HOAr(OMe) gave the mixed aryloxide/alkynide complexes [Ln(OAr(OMe))2(CCPh)(thf)2]. Oxidation of the divalent ytterbium aryloxide [Yb(OAr(OMe))2(thf)3] by Hg(CCPh)2 in thf gave the analogous [Yb(OAr(OMe))2(CCPh)(thf)2]. The erbium alkynide [Er(OAr(OMe))2(CCPh)(thf)2] x 0.25 C6H14 has distorted square-pyramidal stereochemistry with transoid OAr(OMe) and thf ligands in the basal plane and a rare (for Ln) terminal alkynide ligand in the apical position. The reactive Lu-C bond in the [Lu(OAr(OMe))2(CCPh)(thf)2] complexes could be slowly cleaved by free HOAr(OMe) in hydrocarbon solvents, yielding Lu(OAr(OMe))3 species and fortuitous partial hydrolysis of [Er(Ar(OMe))2(CCPh)(thf)2] gave the dimeric [Er(OAr(OMe))2(mu-OH)2]2.  相似文献   

6.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

7.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

8.
Cyclic polyamine 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane, (Me(3)TACD)H (= Me(3)[12]aneN(4)), reacted with [K{N(SiHMe(2))(2)}] in benzene-d(6) to give [K{(Me(3)TACD)SiMe(2)N(SiHMe(2))}] (1) under hydrogen evolution. Single-crystal X-ray diffraction of 1 shows a dinuclear structure in the solid state, featuring a bridging μ-amido and a weak β-agostic Si-H bond. 1,7-Dimethyl-1,4,7,10-tetraazacyclododecane (Me(2)TACD)H(2) (= Me(2)[12]aneN(4)) and (Me(3)TACD)H were reacted with [Sc{N(SiHMe(2))(2)}(3)(thf)] in benzene-d(6) to give [{(Me(2)TACD)SiMe(2)N(SiHMe(2))}Sc{N(SiHMe(2))(2)}] (2) and [(Me(3)TACD)Sc{N(SiHMe(2))(2)}(2)SiMe(2)] (3), respectively. Both compounds are monomeric in solution and X-ray diffraction studies showed the scandium metal centers to be six-coordinate. The scandium alkyl complex [Sc(Me(3)TACD)(CH(2)SiMe(3))(2)] (4) was obtained by reacting (Me(3)TACD)H with [Sc(CH(2)SiMe(3))(3)(thf)] in benzene-d(6). The scandium amide complexes 2 and 3 catalyzed the ring-opening polymerization (ROP) of meso-lactide to give syndiotactic polylactides.  相似文献   

9.
The monoborohydride lanthanide complex [Sm(Cp*)2(BH4)(thf)] (1a) (Cp* = eta-C5Me5), has been successfully used for the controlled ring-opening polymerization of epsilon-caprolactone (epsilon-CL). The organometallic samarium(III) initiator 1 a produces, in quantitative yields, alpha,omega-dihydroxytelechelic poly(epsilon-caprolactone) displaying relatively narrow polydispersity indices (<1.3) within a short period of time (30 min). The polymers have been characterized by 1H and 13C NMR, SEC, and MALDI-TOF MS analyses. Use of the single-site initiator 1 a allows a better understanding of the polymerization mechanism, in particular with the identification of the intermediate compound [Sm(Cp*)2(BH4)(epsilon-CL)] (1b). Indeed, one molecule of epsilon-CL initially displaces the coordinated THF in 1 a to give 1 b. Then, epsilon-CL opening (through cleavage of the cyclic ester oxygen-acyl bond) and insertion into the Sm--HBH3 bond followed by reduction of the carbonyl function by the BH3 end-group ligand, leads to the samarium alkoxyborane derivative [Sm(Cp*)2[O(CH2)6O(BH2)]] (2). This compound subsequently initiates the polymerization of epsilon-CL through a coordination-insertion mechanism. Finally, upon hydrolysis, alpha,omega-dihydroxypoly(epsilon-caprolactone), HO(CH2)5C(O)[O(CH2)5C(O)]nO(CH2)6OH (4) is recovered. The stereoelectronic contribution of the two Cp* ligands appears to slow down the polymerization and to limit transesterification reactions.  相似文献   

10.
The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).  相似文献   

11.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

12.
Rare earth metals activated with ca. 2% iodine react directly with 2,6-diisopropylphenol (HOdip) in tetrahydrofuran (thf), 1,2-dimethoxyethane (dme), and dig-dme (dig = di(2-methoxyethyl) ether) to give solvated phenolate complexes [Ln(Odip)(3)(thf)(n)] (Ln = La, Nd, n = 3; Ln = Sm, Dy, Y, Yb, n = 2), [Eu(Odip)(μ-Odip)(thf)(2)](2), [Ln(Odip)(3)(dme)(2)] (Ln = La, Yb) and [La(Odip)(3)(dig)] in good yield for Ln = La, Nd, Eu but modest yield for smaller Ln metals under comparable conditions. However, increasing the excess of metal greatly increased the yield for Ln = Y. The synthetic method has general potential, at least for lanthanoid phenolates. Comparison redox transmetallation/protolysis (RTP) reactions between Ln metals, Hg(C(6)F(5))(2) and the phenol gave higher yields in shorter time and, for Eu, gave [Eu(Odip)(3)(thf)(3)] in contrast to an Eu(II) complex from Eu(I(2)). New [Ln(Odip)(3)(thf)(3)] complexes have fac-octahedral structures and [Ln(Odip)(3)(thf)(2)] monomeric five coordinate distorted trigonal bipyramidal structures with apical thf ligands. [Eu(Odip)(μ-Odip)(thf)(2)](2) is an unsymmetrical dimer with two bridging Odip ligands. One five coordinate Eu atom has distorted trigonal bipyramidal stereochemistry and the other is distorted square pyramidal. Whilst [La(Odip)(3)(dme)(2)] has irregular seven coordination with mer-Odip and chelating dme ligands, [Ln(Odip)(3)(dme)(2)] (Ln = Dy, Y (prepared by ligand exchange), Yb) are monomeric six coordinate with one chelating and one unidentate dme. A six coordinate fac-octahedral arrangement is observed in [La(Odip)(3)(dig)].  相似文献   

13.
A series of trivalent mono- and tris(ligand) lanthanide complexes of a sulfur-bridged binaphthol ligand [1,1'-S(2-HOC(10)H(4)Bu(t)(2)-3,6)(2)] H(2)L(SN), have been prepared and characterised both structurally and photophysically. The H(2)L(SN) ligand provides an increased steric bulk and offers an additional donor atom (sulfur) as compared with 1,1'-binaphthol (BINOL), a ligand commonly used to complex Lewis acidic lanthanide catalysts. Reaction of the diol H(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] affords silylamido- and amino- derivatives [Sm(L(SN))[N(SiMe(3))(2)][HN(SiMe(3))(2)]] and the crystallographically characterised [Sm(L(SN))[N(SiMe(3))(2)](thf)(2)] with different degrees of structural rigidity, depending on the presence of coordinating solvents. The binaphthyl groups of the L(SN) ligand act as sensitisers of the metal centred emission, which is observed for the Eu(III) and Sm(III) complexes studied. We have therefore sought to use emission spectroscopy as a non-invasive technique to monitor a monomer-dimer equilibrium in these complexes. A dramatic difference between the emission properties of the unreactive dimeric Sm(III) aryloxide complex, the solvated monomeric analogues and the amido adduct demonstrated the potential use of such a technique. For a few representative lanthanides (Ln = Sm, Eu and Y) the reaction of the dilithium salt Li(2)L(SN) with either [Ln[N(SiMe(3))(2]3)] or [LnCl(3)(thf)(3)] affords only the homoleptic complex [Li(S)(3)][LnL(SN)(3)](S = thf or diethyl ether); we report the structural characterisation of the Sm complex. However, the reactions of this dipotassium salt K(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] or [SmCl(3)(thf)(3)] give only [SmL(SN)N(SiMe(3))(2)], or intractable mixtures respectively, in which no (tris)binaphtholate is observed. The only isolable lanthanide-L(SN) halide adduct so far is [YbL(SN)I(thf)].  相似文献   

14.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

15.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

16.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

17.
The anion [Mo(2)Cp(2)(μ-PCy(2))(μ-CO)(2)](-) (1; Li(+) salt) reacts at 290 K with P(4) to give the diphosphorus-bridged complex [Mo(2)Cp(2)(μ-PCy(2))(CO)(2)(μ-κ(2):κ(2)-P(2))](-) (2). The latter reacts with MeI and ClSnPh(3) through a single P atom to give respectively diphosphenyl [Mo(2)Cp(2)(μ-PCy(2))(CO)(2)(μ-κ(2):κ(2)-P(2)Me)] (3) and stannyl [Mo(2)Cp(2)(μ-PCy(2))(CO)(2){μ-κ(2):κ(2)-P(2)(SnPh(3))}] (4) derivatives, with the P-P-Sn angle in 4 being unexpectedly acute [80.3(1)°]. According to density functional theory calculations, this novel nucleophilic behavior of 1 is derived from its anionic nature, thus enabling the P(2) ligand to act in a π-donor-like fashion.  相似文献   

18.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

19.
Reactions of (Et(2)N)(2)P-P(SiMe(3))Li with [Cp(2)MCl(2)] (M = Zr, Hf) in toluene or pentane yield the related terminal phosphanylphosphido complexes [Cp(2)M(Cl){η(1)-(Me(3)Si)P-P(NEt(2))(2)}]. The solid state structure of [Cp(2)Hf(Cl){η(1)-(Me(3)Si)P-P(NEt(2))(2)}] was established by single crystal X-ray diffraction. The reaction of (Et(2)N)(2)P-P(SiMe(3))Li with [Cp(2)ZrCl(2)] in THF or DME solutions leads to the formation of deep red crystals of the first neutral diamagnetic zirconocene-phosphanylphosphinidene dimer [Cp(2)Zr{μ(2)-P-P(NEt(2))(2)}(2)ZrCp(2)]. The molecular structure of this compound was confirmed by X-ray diffraction. The reactions of (R(2)N)(2)P-P(SiMe(3))Li with [CpZrCl(3)] yield the related tetraphosphetanes R(2)NP(μ(2)-PSiMe(3))(2)PNR(2), which apparently are formed as a result of a transfer of NR(2) groups from a P atom to the Zr atom.  相似文献   

20.
The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(μ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(μ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(μ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号