首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid identification of glycosylation sites of glycoproteins is urgently needed in glycoproteomics study. In the present work, a rapid and simple method based on non-specific digestion of gel-separated glycoproteins and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry was described, which can efficiently identify the N-linked glycosylation sites. One-step in-gel digestion of Ribonuclease B (RNase B) by proteinase K was employed to generate glycopeptides with short and discrepant peptide composition. When compared with glycopeptides prepared by two-step in gel-digestion using trypsin-proteinase K or trypsin-pronase, the direct proteinase K treatment showed obvious superiority in both glycopeptide recovery and preparation simplicity. Most importantly, it helps to generate greater variety of glycopeptide series with rich information for glycosylation site identification. In addition, binary matrices 5-chloro-2-mercaptobenzothiazole (CMBT) /2,5-dihydroxybenzoic acid (DHB) were found to form homogeneous microcrystal on the target with the purified glycopeptides, leading to improved detection sensitivity. Thus, the present work provides an optimized solution to speed up the characterization of N-linked glycosylation sites in glycoproteins.  相似文献   

2.
We demonstrate herein a method for quantifying glycosylation changes on glycoproteins. This novel method uses MS data of characterized glycopeptides to analyze glycosylation profiles, and several quality control tests were done to demonstrate that the method is reproducible, robust, applicable to different types of glycoproteins, and tolerant of instrumental variability during ionization of the analytes. This method is unique in that it is the first label-free quantitative method specifically designed for glycopeptide analysis. It can be used to monitor changes in glycosylation in a glycosylation site-specific manner on a single glycoprotein, or it can be used to quantify glycosylation in a glycoprotein mixture. During mixture analysis, the method can discriminate between changes in glycosylation of a given protein, and changes in the glycoprotein’s concentration in the mixture. This method is useful for quantitative analyses in biochemical studies of glycoproteins, where changes in glycosylation composition can be linked to functional differences; it could also be implemented in the pharmaceutical industry, where glycosylation profiles of glycoprotein-based therapeutics must be quantified. Finally, quantification of glycopeptides is an important aspect of glycopeptide-based biomarker discovery, and our quantitative approach could be a valuable asset to this field as well, provided the compositions of the glycopeptides to be quantified are identifiable using other methods.  相似文献   

3.
Glycosylation plays a key role in controlling various cellular processes; in diseases modifications of the glycans also highlight its clinical importance. However, ^glycosylation analysis remains a difficult task. In recent years, ^advances in sample preparation and mass spectrometry have greatly facilitated the analysis of glycoproteins. This review mainly covers five aspects of the improvements and advances on the research of protein glycosylation in China: 1) identification of glycoproteins, ^2) identification of glycosylation sites, ^3) new methods developed for glycopeptides enrichment, ^4) characterization of glycans, ^and 5) functional studies of protein glycosylation.  相似文献   

4.
Enrichment of glycoproteins has been important because of their dynamicity and role in biological systems. Study of glycoproteins is complex because of the simultaneous glycosylation and deglycosylation inside the body. Often employed affinities for glycopeptides are hydrazide, boronic acid, or physiosorbed lectin on support materials. Cellulose, a natural polysaccharide, has rich surface chemistry, stable structure, low cost and availability in different variants. In present study, fibrous cellulose is oxidized using periodate to modify with boronic acid. Attachment of boronic acid is confirmed by Fourier transform infrared spectroscopy. Particle size and morphology of boronic acid@fibrous cellulose is studied by scanning electron microscopy. The enrichment efficiency is evaluated by using horseradish peroxidase as model protein. Boronic acid@fibrous cellulose is selective up to 1:250 for spiked horseradish peroxidase in bovine serum albumin digest, sensitive down to 0.1 femtomol and recovering 88.15% glycopeptides. Moreover, protein binding capacity is determined as 213 mg/g and 41% sequence coverage of horseradish peroxidase protein with all eight glycosylation sites detected. Total of 18 glycopeptides are enriched from immunoglobulin digest showing ability of boronic acid@fibrous cellulose to enrich glycoproteins from multiglycoforms. Enrichment from human serum recovers 18% extracellular and 72% secreted glycoproteins via bottom‐up approach and online tools.  相似文献   

5.
We have previously shown sugar-assisted ligation (SAL) to be a useful method for the convergent construction of glycopeptides. However to date SAL has only been carried out on systems where the thiol auxiliary is attached to a monosaccharide. For SAL to be truly applicable to the construction of fully elaborated glycopeptides and glycoproteins, it must be possible to carry out the reaction when the thiol auxiliary is attached to more elaborate sugars, as these are frequently what are observed in nature. Here we examine the effects of glycosylation at C-3, C-4, and C-6 of the C-2 auxiliary-containing glycan. Model glycopeptides where synthesized chemoenzymatically and reacted with peptide thioesters used in our previous work. These studies reveal that SAL is sensitive to extended glycosylation on the auxiliary-containing sugar. While it is possible to carry out SAL with extended glycosylation at C-4 and C-6, the presence of glycosylation at C-3 prevents the ligation from occurring. Additionally, with glycosylation at C-4 the ligation efficiency is affected by the identity of the N-terminal AA, while the nature of the C-terminal residue of the peptide thioester does not appear to affect ligation efficiency. These studies provide useful guidelines in deciding when it is appropriate to use SAL in the synthesis of complex glycopeptides and glycoproteins and how to choose ligation junctions for optimal yield.  相似文献   

6.
Dalpathado DS  Desaire H 《The Analyst》2008,133(6):731-738
Glycosylation is one of the most important post-translational modifications found in nature. Identifying and characterizing glycans is an important step in correlating glycosylation structure to the glycan's function, both in normal glycoproteins and those that are modified in a disease state. Glycans on a protein can be characterized by a variety of methods. This review focuses on the mass spectral analysis of glycopeptides, after subjecting the glycoprotein to proteolysis. This analytical approach is useful in characterizing glycan heterogeneity and correlating glycan compositions to their attachment sites on the protein. The information obtained from this approach can serve as the foundation for understanding how glycan compositions affect protein function, in both normal and aberrant glycoproteins.  相似文献   

7.
Protein glycosylation analysis is important for elucidating protein function and molecular mechanisms in various biological processes. We previously developed a glycan analysis method using a 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix (3-AQ/CHCA LM) and applied it to the quantitative glycan profiling of glycoproteins. However, information concerning glycosylation sites is lost; glycopeptide analysis is therefore required to identify the glycosylation sites in glycoproteins. Human epidermal growth factor receptor 2 (HER2) is a glycoprotein that plays a role in the regulation of cell proliferation, differentiation, and migration. Several reports have described the structure of HER2, but the structures of N-glycans attached to this protein remain to be fully elucidated. In this study, 3-AQ/CHCA LM was applied to tryptic digests of HER2 to reveal its N-glycosylation state and to evaluate the utility of this LM in characterizing glycopeptides. Peptide sequence coverage was considerably improved compared to analysis of HER2 using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid. Most of the peaks observed using only this LM were localized at the inner or outer regions of sample spots. Furthermore, five of the peptide peaks that were enriched within the inner region were confirmed to be glycosylated by MS/MS analysis. Three glycosylation sites were identified and their glycan structures were elucidated. The reduction in sample complexity by on-target separation allowed for higher sequence coverage, resulting in effective detection and characterization of glycopeptides. In conclusion, these results demonstrate that MS-based glycoprotein analysis using 3-AQ/CHCA is an effective method to identify glycosylation sites in proteins and to elucidate the glycan structures of glycoproteins in complex samples.  相似文献   

8.
Protein glycosylation has a major influence on functions of proteins. Studies have shown that aberrations in glycosylation are indicative of disease conditions. This has prompted major research activities for comparative studies of glycoproteins in biological samples. Multiple reaction monitoring (MRM) is a highly sensitive technique which has been recently explored for quantitative proteomics. In this work, MRM was adopted for quantification of glycopeptides derived from both model glycoproteins and depleted human blood serum using glycan oxonium ions as transitions. The utilization of oxonium ions aids in identifying the different types of glycans bound to peptide backbones. MRM experiments were optimized by evaluating different parameters that have a major influence on quantification of glycopeptides, which include MRM time segments, number of transitions, and normalized collision energies. The results indicate that oxonium ions could be adopted for the characterization and quantification of glycopeptides in general, eliminating the need to select specific transitions for individual precursor ions. Also, the specificity increased with the number of transitions and a more sensitive analysis can be obtained by providing specific time segments. This approach can be applied to comparative and quantitative studies of glycopeptides in biological samples as illustrated for the case of depleted blood serum sample. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Research aimed at understanding the specific role of glycosylation patterns in protein function would greatly benefit from additional approaches allowing direct access to homogeneous glycoproteins. Herein the development and application of an efficient approach for the synthesis of complex homogenously glycosylated peptides based on a multifunctional photocleavable auxiliary is described. The presence of a PEG polymer within the auxiliary enables sequential enzymatic glycosylation and straightforward isolation in excellent yields. The auxiliary‐modified peptides can be directly used in native chemical ligations with peptide thioesters easily obtained by direct hydrazinolysis of the respective glycosylated peptidyl resins and subsequent oxidation. The ligated glycopeptides can be smoothly deprotected by UV irradiation. We apply this approach to the preparation of variants of the epithelial tumor marker MUC1 carrying one or more Tn, T, or sialyl‐T antigens.  相似文献   

10.
Development of a synthetic method for the preparation of homogeneous glycopeptides and glycoproteins is important for the elucidation of their structures and functions. Here, we report on the concise and facile synthesis of glycopeptides using Boc groups for the protection of carbohydrate hydroxyl groups. This method enables us to remove the protecting groups from peptide and carbohydrate moieties in a single-step process without undesirable any side reaction.  相似文献   

11.
A strategy is presented for comparative analysis of glycoproteins in which the variation of protein concentration, variation of glycosylation site occupancy and variation of glycoform profile can be determined. A comparative study was performed using stable isotope labeling of glycopeptides and peptides by formaldehyde-H2 and formaldehyde-D2 and analysis by ESI-MS analysis. The relative intensity of the nonglycosylated peptide provided information about protein concentration variation. Variation of the glycoform profile was obtained by comparing the glycoform profile of d0- and d4-dimethyl labeled glycopeptides. By knowing the variation of protein concentration and the variation of glycoform profile, the variation of glycosylation site occupancy could be calculated. The utility of the proposed strategy was demonstrated with ribonuclease B with different protein concentrations, different levels of glycosylation site occupancy and different glycoform profiles.  相似文献   

12.
The N‐glycosylation of proteins is generated at the consensus sequence NXS/T (where X is any amino acid except proline) by the biosynthetic process, and occurs in the endoplasmic reticulum and Golgi apparatus. In order to investigate the influence of human complex‐type oligosaccharides on counterpart protein conformation, crambin and ovomucoide, which consist of 46 and 56 amino acid residues, respectively, were selected for synthesis of model glycoproteins. These small glycoproteins were intentionally designed to be glycosylated at the α‐helix (crambin: 8 position), β‐sheet (crambin: 2 position) and loop position between the antiparallel β‐sheets (ovomucoide: 28 position), and were synthesized by using a peptide‐segment coupling strategy. After preparation of these glycosylated polypeptide chains, protein folding experiments were performed under redox conditions by using cysteine–cystine. Although the small glycoproteins bearing intentional glycosylation at the α‐helix and β‐sheet exhibited a suitable folding process, glycosylation at the loop position between the antiparallel β‐strands caused multiple products. The conformational differences in the isolated homogeneous glycoproteins compared with non‐glycosylated counterparts were evaluated by circular dichroism (CD) and NMR spectroscopy. These analyses suggested that this intentional N‐glycosylation did not result in large conformational changes in the purified protein structures, including the case of glycosylation at the loop position between the antiparallel β‐strands. In addition to these experiments, the conformational properties of three glycoproteins were evaluated by CD spectroscopy under different temperatures. The oligosaccharides on the protein surface fluctuated considerably; this was dependent on the increase in the solution temperature and was thought to disrupt the protein tertiary structure. Based on the measurement of the CD spectra, however, the glycoproteins bearing three disulfide bonds did not exhibit any change in their protein tertiary structure. These results suggest that the oligosaccharide conformational fluctuations were not disruptive to protein tertiary structure, and the tertiary structure of glycoproteins might be stabilized by the disulfide bond network.  相似文献   

13.
陈刚  白泉  耿信笃 《色谱》2006,24(5):425-431
通过对硅胶基质进行化学改性键合伴刀豆球蛋白(Con A),制备了对糖蛋白具有特异亲和作用的亲和色谱固定相;该固定相非特异性吸附弱,对于糖蛋白和糖肽的分离效果良好。对亲和色谱的分离条件进行了优化,以标准糖蛋白核糖核酸酶B(RNase B)为模型,对其进行了纯化;用糖苷酶切除糖链,并对切除糖链前后的RNase B用胰蛋白酶酶解;用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)对亲和色谱分离得到的糖蛋白、糖链及糖肽进行了分析,确定了RNase B的一级结构、糖含量、糖基化位点及糖连接方式。该方法快速准确,适于糖蛋白和糖肽的分离表征。将其应用于血清中糖蛋白及酶解后血清中糖肽的分离富集,取得了很好的效果。  相似文献   

14.
The combination of solid phase peptide synthesis and endo-β-N-acetylglucosaminidase (ENGase) catalysed glycosylation is a powerful convergent synthetic method allowing access to glycopeptides bearing full-length N-glycan structures. Mannose-terminated N-glycan oligosaccharides, produced by either total or semi-synthesis, were converted into oxazoline donor substrates. A peptide from the human cytomegalovirus (CMV) tegument protein pp65 that incorporates a well-characterised T cell epitope, containing N-acetylglucosamine at specific Asn residues, was accessed by solid phase peptide synthesis, and used as an acceptor substrate. High-yielding enzymatic glycosylation afforded glycopeptides bearing defined homogeneous high-mannose N-glycan structures. These high-mannose containing glycopeptides were tested for enhanced targeting to human antigen presenting cells (APCs), putatively mediated via the mannose receptor, and for processing by the APCs for presentation to human CD8+ T cells specific for a 9-mer epitope within the peptide. Binding assays showed increased binding of glycopeptides to APCs compared to the non-glycosylated control. Glycopeptides bearing high-mannose N-glycan structures at a single site outside the T cell epitope were processed and presented by the APCs to allow activation of a T cell clone. However, the addition of a second glycan within the T cell epitope resulted in ablation of T cell activation. We conclude that chemo-enzymatic synthesis of mannosylated glycopeptides enhances uptake by human APCs while preserving the immunogenicity of peptide epitopes within the glycopeptides, provided those epitopes are not themselves glycosylated.  相似文献   

15.
The chemical synthesis of glycopeptides and glycoproteins from readily available materials presents an attractive route to homogeneous products for structural and functional studies. Chemical synthesis of glycopeptides and glycoproteins based on native chemical ligation represents one of the useful methods for the synthesis of natural glycopeptide structures. Here we describe a method that allows for the synthesis of glycopeptides from cysteine-free peptides. This method utilizes a peptide thioester and a glycopeptide in which the sugar moiety is modified with a thiol handle at the C-2 position. Upon completion of the ligation reaction, the thiol handle can be reduced with H2/metal to the acetamide moiety, furnishing the unmodified glycopeptides. Together, this sequence of reactions displays an attractive potential in glycopeptides and glycoproteins synthesis.  相似文献   

16.
The recent understanding of the biological role of glycoproteins has brought about a demand for the highly homogeneous glycopeptides as the functional model for glycoproteins. Thus, much efforts have been made to establish easy and efficient method for glycopeptide synthesis. In this paper, we briefly review the recent advances in the synthesis of O- and N-linked glycopeptide based on the solid-phase method. In O-glycopeptide section, the preparation of glycosylated amino acid units with mucin type and other O-linked carbohydrate chains and their use for solid-phase synthesis are summarized. Other approaches, such as the glycosylation of resin bound peptide are also overviewed. In N-glycopeptide section, the synthesis using glycosylated amino acid units as well as other methods are described.  相似文献   

17.
We developed an efficient and convenient strategy for protein identification and glycosylation analysis of a small amount of unknown glycoprotein in a biological sample. The procedure involves isolation of proteins by electrophoresis and mass spectrometric peptide/glycopeptide mapping by LC/ion trap mass spectrometer. For the complete glycosylation analysis, proteins were extracted in intact form from the gel, and proteinase-digested glycoproteins were then subjected to LC/multistage tandem MS (MSn) incorporating a full mass scan, in-source collision-induced dissociation (CID), and data-dependent MSn. The glycopeptides were localized in the peptide/glycopeptide map by using oxonium ions such as HexNAc+ and NeuAc+, generated by in-source CID, and neutral loss by CID-MS/MS. We conducted the search analysis for the glycopeptide identification using search parameters containing a possible glycosylation at the Asn residue with N-acetylglucosamine (203 Da). We were able to identify the glycopeptides resulting from predictable digestion with proteinase. The glycopeptides caused by irregular cleavages were not identified by the database search analysis, but their elution positions were localized using oxonium ions produced by in-source CID, and neutral loss by the data-dependent MSn. Then, all glycopeptides could be identified based on the product ion spectra which were sorted from data-dependent CID-MSn spectra acquired around localized positions. Using this strategy, we successfully elucidated site-specific glycosylation of Thy-1, glycosylphosphatidylinositol (GPI)-anchored proteins glycosylated at Asn23, 74, and 98, and at Cys111. High-mannose-type, complex-type, and hybrid-type oligosaccharides were all found to be attached to Asn23, 74 and 98, and four GPI structures could be characterized. Our method is simple, rapid and useful for the characterization of unknown glycoproteins in a complex mixture of proteins.  相似文献   

18.
The N-glycosylation of proteins is generated at the consensus sequence NXS/T (where X is any amino acid except proline) by the biosynthetic process, and occurs in the endoplasmic reticulum and Golgi apparatus. In order to investigate the influence of human complex-type oligosaccharides on counterpart protein conformation, crambin and ovomucoide, which consist of 46 and 56 amino acid residues, respectively, were selected for synthesis of model glycoproteins. These small glycoproteins were intentionally designed to be glycosylated at the α-helix (crambin: 8?position), β-sheet (crambin: 2?position) and loop position between the antiparallel β-sheets (ovomucoide: 28?position), and were synthesized by using a peptide-segment coupling strategy. After preparation of these glycosylated polypeptide chains, protein folding experiments were performed under redox conditions by using cysteine-cystine. Although the small glycoproteins bearing intentional glycosylation at the α-helix and β-sheet exhibited a suitable folding process, glycosylation at the loop position between the antiparallel β-strands caused multiple products. The conformational differences in the isolated homogeneous glycoproteins compared with non-glycosylated counterparts were evaluated by circular dichroism (CD) and NMR spectroscopy. These analyses suggested that this intentional N-glycosylation did not result in large conformational changes in the purified protein structures, including the case of glycosylation at the loop position between the antiparallel β-strands. In addition to these experiments, the conformational properties of three glycoproteins were evaluated by CD spectroscopy under different temperatures. The oligosaccharides on the protein surface fluctuated considerably; this was dependent on the increase in the solution temperature and was thought to disrupt the protein tertiary structure. Based on the measurement of the CD spectra, however, the glycoproteins bearing three disulfide bonds did not exhibit any change in their protein tertiary structure. These results suggest that the oligosaccharide conformational fluctuations were not disruptive to protein tertiary structure, and the tertiary structure of glycoproteins might be stabilized by the disulfide bond network.  相似文献   

19.
We introduce a novel combination of magnetic particles with hydrazine chemistry, dubbed as hydrazine-functionalized magnetic particles (HFMP) for isolation of glycopeptides. Four methods have been developed and compared for the production of HFMP by hydrazine modification of the surface of the carboxyl and epoxy-silanized magnetic particles, respectively. The evaluation of the capability and specificity of HFMP as well as the optimization of the coupling condition for capturing of glycoproteins were systematically investigated. The results showed that HFMP prepared by adipic dihydrazide functionalization from carboxyl-silanized magnetic particles (HFCA) displayed the maximum capture capacity and isolated efficiency for glycoprotein. When measured with glycoproteins, the capacity of the HFCA (1 g) for coupling bovine fetuin was 130?±?5.3 mg. The capability of this method was also confirmed by successful isolation of all formerly glycosylated peptides from standard glycoproteins and identification of their glycosylation sites, which demonstrated the feasibility of the HFCA as an alternative solid support for isolation of glycoproteins/glycopeptides.
Figure
Schematic diagram for the preparation of hydrazine-functionalized magnetic particles (HFMP) and isolation of N-linked glycopeptides by HFMP from protein sample.  相似文献   

20.
The single envelope glycoprotein of vesicular stomatitis virus was used as a specific probe of glycosyltransferase activities in fibroblasts from two cystic fibrosis patients, an obligate heterozygous carrier and a normal individual. Gel filtration of pronase-digested glycopeptides from both purified virions and infected cell-associated VSV glycoprotein which had been labeled with[3H] glucosamine did not reveal any significant differences in the glycosylation patterns between the different cell cultures. All 4 cell lines were apparently able to synthesize the mannose- and glucosamine- containing core structure and branch chains terminating in sialic acid which are characteristic of asparagine-linked carbohydrate side chains in cellular glycoproteins. Analysis of tryptic glycopeptides by anion-exchange chromotography indicated that the same 2 major sites on the virus polypeptide were recognized and glycosylated in all 4 VSV-infected cell cultures. These studies suggest that the basic biochemical defect(s) in cystic fibrosis is not an absence or deficiency in enzymes responsible for the biosynthesis of complex carbohydrate side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号