首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conversion of cellular prion protein (PrP(C)) into the pathological conformer PrP(Sc) requires contact between both isoforms and probably also requires a cellular factor, such as a nucleic acid or a glycosaminoglycan (GAG). Little is known about the structural features implicit in the GAG-PrP interaction. In the present work, light scattering, fluorescence, circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy were used to describe the chemical and physical properties of the murine recombinant PrP 23-231 interaction with low molecular weight heparin (LMWHep) at pH 7.4 and 5.5. LMWHep interacts with rPrP 23-231, thereby inducing transient aggregation. The interaction between murine rPrP and heparin at pH 5.5 had a stoichiometry of 2:1 (LMWHep:rPrP 23-231), in contrast to a 1:1 binding ratio at pH 7.4. At binding equilibrium, NMR spectra showed that rPrP complexed with LMWHep had the same general fold as that of the free protein, even though the binding can be indicated by significant changes in few residues of the C-terminal domain, especially at pH 5.5. Notably, the soluble LMWHep:rPrP complex prevented RNA-induced aggregation. We also investigated the interaction between LMWHep and the deletion mutants rPrP Δ51-90 and Δ32-121. Heparin did not bind these constructs at pH 7.4 but was able to interact at pH 5.5, indicating that this glycosaminoglycan binds the octapeptide repeat region at pH 7.4 but can also bind other regions of the protein at pH 5.5. The interaction at pH 5.5 was dependent on histidine residues of the murine rPrP 23-231. Depending on the cellular milieu, the PrP may expose different regions that can bind GAG. These results shed light on the role of GAGs in PrP conversion. The transient aggregation of PrP may explain why some GAGs have been reported to induce the conversion into the misfolded, scrapie conformation, whereas others are thought to protect against conversion. The acquired resistance of the complex against RNA-induced aggregation explains some of the unique properties of the PrP interaction with GAGs.  相似文献   

2.
Transmissible spongiform encephalopathies (TSE), or prion diseases, are mammalian neurodegenerative disorders characterized by a conformational modification of the host-encoded prion protein (PrP(C)) into an isoform which is detergent-insoluble and partially resistant to protease treatment (PrP(Sc)). Distinct types of PrP(Sc), differing in conformation and variation in the relative amount of their glycoforms, have been associated with different phenotypes of TSE. In sporadic Creutzfeldt-Jakob disease (sCJD), two major types of PrP(Sc), with proteinase K (PK)-resistant fragments of 21 and 19 kDa, have been described. No consensus exists, however, on the molecular classification of PrP(Sc) in sCJD, since further heterogeneity within PrPSc conformers has been reported. We studied 19 subjects with dementia or dementia/ataxia at onset and 12 subjects with ataxia at onset. Following two-dimensional gel electrophoresis, we characterized PrP(C) and PrP(Sc) species in normal and sCJD brains by immunoblotting with antibodies recognizing N-terminal and C-terminal PrP regions. Three types of PrP(Sc) were detected in detergent-insoluble fractions from sCJD brains, mainly consisting of full-length PrP(Sc) in subjects with rapidly progressive dementia, and two different sets of amino-truncated PrP(Sc) glycoforms in subjects with dementia/ataxia and ataxia at onset. Examination of the PrP(Sc) core fragment, following PK treatment and deglycosylation, confirmed the existence of three distinctive patterns. These findings have immediate implications for the molecular classification of sCJD.  相似文献   

3.
The cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein abundant in neurons. Although its precise function is unknown, PrP(C) represents the substrate for the generation of a conformational pathogenic isoform (PrP(Sc)) in human and animal transmissible spongiform encephalopathies, or prion diseases. By applying novel solubilization cocktails, we analyzed normal human brain and cerebrospinal fluid (CSF) PrP(C) by immunoblot of two-dimensional (2-D) gel electrophoresis preparations, using specific antibodies. Here, we show that PrP(C) from brain and CSF is composed of several charge isomers of differently glycosylated isoforms of the full-length PrP(C) and two N-terminally truncated fragments of 20 and 18 kDa. In the CSF, substantial amounts of the highly glycosylated PrP(C) isoforms and of the unglycosylated 18 kDa fragment are detected. Our study, for the first time, provides a detailed 2-D map of human PrP(C) both in brain and CSF, and establishes an innovative and sensitive method that might help in detecting the CSF pathological PrP(Sc) isoform in vivo. It also shows the incredible microheterogeneity of such isoforms (ca. 60 spots!), as revealed in 2-D mapping, as opposed to 3-4 main zones by mono-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

4.
5.
Wang Y  Feng L  Zhang B  Wang X  Huang C  Li Y  Du W 《Inorganic chemistry》2011,50(10):4340-4348
Many neurodegenerative disorders are induced by protein conformational change. Prion diseases are characterized by protein conformational conversion from a normal cellular form (PrP(C)) to an abnormal scrapie isoform (PrP(Sc)). PrP106-126 is an accepted model for studying the characteristics of PrP(Sc) because they share many biological and physiochemical properties. To understand how metal complexes affect the property of the prion peptide, the present work investigated interactions between Pd complexes and PrP106-126 based on our previous research using Pt and Au complexes to target the peptide. The selected compounds (Pd(phen)Cl(2), Pd(bipy)Cl(2), and Pd(en)Cl(2)) showed strong binding affinity to PrP106-126 and affected the conformation and aggregation of this active peptide in a different binding mode. Our results indicate that it may be the metal ligand-induced spatial effect rather the binding affinity that contributes to better inhibition on peptide aggregation. This finding would prove valuable in helping design and develop novel metallodrugs against prion diseases.  相似文献   

6.
Transmissible spongiform encephalopathies (TSEs) are characterised by the accumulation in the tissues of affected individuals of an abnormal form (PrP(Sc)) of a protein naturally produced by the host, the cellular prion protein (PrP(C)). In sheep, susceptibility to TSEs is tightly controlled by polymorphism at positions 136 (A or V), 154 (R or H) and 171 (R or Q) of the Prnp gene encoding the prion protein (PrP). Quantification of PrP variants at positions 136, 154 and 171 can be achieved by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometric analysis of the respective peptides 114-139, 152-159 and 160-171 obtained after tryptic digestion of the PrP protein. In this study we quantified the tryptic peptide 114-139 containing the first polymorphic site. Quantification was either relative, between variants of this peptide, or absolute with respect to the C-terminally (18)O-labelled peptide obtained by hydrolysing known amounts of recombinant protein with trypsin in H(2) (18)O. After purification of PrP(C) and PrP(Sc) from the brain of two heterozygous sheep carrying either the ARQ/VRQ or ARR/VRQ genotypes, the proportion of each variant was measured. In the ARQ/VRQ animal, while both variants were equally represented in the normal isoform, the VRQ variant was predominantly found in the abnormal PrP protein, suggesting dissimilar behaviour of the two variants in the pathological process. The situation was even more contrasted in the ARR/VRQ animal where PrP(Sc) was solely composed of the VRQ variant. These two examples clearly illustrate the value of MALDI-TOF analysis, combined with appropriate immunopurification techniques, in seeking a precise understanding of the influence of PrP polymorphisms on TSE pathogenesis.  相似文献   

7.
Prion diseases are characterized by a structural modification of the regular prion protein (PrP(C)) to its isoform, termed PrP(Sc)(scrapie). Such a modification involves the secondary and tertiary structure of the protein; the amino acidic sequence remains unchanged. PrP(Sc) is almost insoluble in non-denaturing solvents, resistant to proteases and it loses its redox activity. PrP(C) is able to bind copper and other metal ions: these complexes have been suggested to play an important role in the protein refolding leading to PrP(Sc). It is well-known that at least one relatively strong copper-binding site is located in the PrP(92--126) domain, where two His residues (96 and 111) are present. However, in the same domain, other amino acidic residues bear potentially donating atoms, i.e. Met, Asn and Lys residues. In order to shed light on the role of the side chains of such potentially tridentate amino acids on copper complexation, the polypeptide Ac-KTNMKHMA-NH(2), corresponding to the PrP(106--113) fragment, and some synthetic analogues have been investigated as ligands for the copper ion, by means of both thermodynamic and spectroscopic techniques. The pivotal role of imidazolic side chain of His in "anchoring" the metal ion has been confirmed. On the other hand, no clue was found on the participation of sulfur atom of Met or side amino-group of Lys residues to copper complex-formation.  相似文献   

8.
The structural conversion of the prion protein (PrP) from the normal cellular isoform (PrP(C)) to the posttranslationally modified form (PrP(Sc)) is thought to relate to Cu2? binding to histidine (H) residues. Traditionally, the binding of metals to PrP has been investigated by monitoring the conformational conversion using circular dichroism (CD). In this study, the metal-binding ability of 21 synthetic peptides representing regions of human PrP(C) was investigated by column switch high-performance liquid chromatography (CS-HPLC). The CS-HPLC system is composed of a metal chelate affinity column and an octadecylsilica (ODS) reversed-phase column that together enable the identification of metal-binding regardless of conformational conversion. Synthetic peptides were designed with respect to the position of H residues as well as the secondary structure of human PrP (hPrP). The ability of the octapeptide (PHGGGWGQ)-repeating region (OP-repeat) to bind metals was analyzed by CS-HPLC and supported by CD analysis, and indicated that CS-HPLC is a reliable and useful method for measuring peptide metal-binding. Peptides from the middle region of hPrP showed a high affinity for Cu2?, but binding to Zn2?, Ni2?, and Co2? was dependent on peptide length. C-Terminal peptides had a lower affinity for Cu2?, Zn2?, Ni2?, and Co2? than OP-repeat region peptides. Interestingly, hPrP193-230, which contained no H residues, also bound to Cu2?, Zn2?, Ni2?, and Co2?, indicating that this region is a novel metal-binding site in the C-terminal region of PrP(C). The CS-HPLC method described in this study is useful and convenient for assessing metal-binding affinity and characterizing metal-binding peptides or proteins.  相似文献   

9.
Prions are a novel class of infectious pathogens that cause a group of fatal prion diseases in which the benign cellular form of the prion protein (PrP(C)) is transformed into the disease-related scrapie variant (PrP(SC)). The two PrP isoforms differ in their structure and resistance to degradation. The molecular mechanism by which the PrP(SC) is formed and causes infectivity or neurodegeneration is not known. In a compelling and emerging view, post-translational modifications (or the lack thereof) play roles in the transformation of PrP(C) to PrP(SC). Human PrP contains two consensus sites for N-linked glycosylation, at Asn181 and Asn197. From the functional standpoint, glycosylation can modify either the conformation of PrP(C), or the stability of PrP(SC) and, hence, the rate of PrP(SC) clearance. So far the NMR structures of only recombinant, non-glycosylated prions are known, while the structure of the glycosylated form is estimated by molecular modeling. A number of native amino acid mutations in PrP can be mapped near the glycosylation sites. Normal prion protein has been demonstrated to be a copper binding protein, and increasing evidence has shown correlation between the level of PrP expression and tolerance to oxidative stress. Moreover, histochemistry for nitrotyrosine is used for detection of neuronal labeling, a sign of a peroxynitrite-mediated neuronal degradation and a marker for nitrative stress in scrapie-infected mouse brains. It is an intriguing proposition that the post-translational modifications alone, or in combination with amino acid changes, play dominant roles in the pathogenic transformation of PrP(C) to PrP(SC).  相似文献   

10.
In the present study we have used molecular dynamics simulations to study the stability of the antiparallel beta-sheet in cellular mouse prion protein (PrP(C)) and in the D178N mutant. In particular, using the recently developed non-Markovian metadynamics method, we have evaluated the free energy as a function of a reaction coordinate related to the beta-sheet disruption/growth. We found that the antiparallel beta-sheet is significantly weaker in the pathogenic D178N mutant than in the wild-type PrP(C). The destabilization of PrP(C) beta-structure in the D178N mutant is correlated to the weakening of the hydrogen bonding network involving the mutated residue, Arg164 and Tyr128 side chains. This in turn indicates that such a network apparently provides a safety mechanism for the unzipping of the antiparallel beta-sheet in the PrP(C). We conclude that the antiparallel beta-sheet is likely to undergo disruption rather than growth under pathogenic conditions, in agreement with recent models of the misfolded monomer that assume a parallel beta-helix.  相似文献   

11.
Substantial evidence indicates that the disease-associated conformer of the prion protein (PrP(TSE)) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrP(TSE) has the ability to convert the conformation of the normal prion protein (PrP(C)) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrP(TSE) at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrP(TSE), the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.  相似文献   

12.
The prion protein (PrP(C)) is implicated in the spongiform encephalopathies in mammals, and it is known to bind Cu(II) at the N-terminal region. The region around His111 has been proposed to be key for the conversion of normal PrP(C) to its infectious isoform PrP(Sc). The principal aim of this study is to understand the role of protons and methionine residues 109 and 112 in the coordination of Cu(II) to the peptide fragment 106-115 of human PrP, using different spectroscopic techniques (UV-vis absorption, circular dichroism, and electron paramagnetic resonance) in combination with detailed electronic structure calculations. Our study has identified a proton equilibrium with a pK(a) of 7.5 associated with the Cu(II)-PrP(106-115) complex, which is ascribed to the deprotonation of the Met109 amide group, and it converts the site from a 3NO to a 4N equatorial coordination mode. These findings have important implications as they imply that the coordination environment of this Cu binding site at physiological pH is a mixture of two species. This study also establishes that Met109 and Met112 do not participate as equatorial ligands for Cu, and that Met112 is not an essential ligand, while Met109 plays a more important role as a weak axial ligand, particularly for the 3NO coordination mode. A role for Met109 as a highly conserved residue that is important to regulate the protonation state and redox activity of this Cu binding site, which in turn would be important for the aggregation and amyloidogenic properties of the protein, is proposed.  相似文献   

13.
The prion protein (PrP) resides in lipid rafts in?vivo, and lipids modulate misfolding of the protein to infectious isoforms. Here we demonstrate that binding of recombinant PrP to model raft membranes requires the presence of ganglioside GM1. A combination of liquid- and solid-state NMR revealed the binding sites of PrP to the saccharide head group of GM1. The binding epitope for GM1 was mapped to the folded C-terminal domain of PrP, and docking simulations identified key residues in the C-terminal region of helix C and the loop between strand S2 and helix B. Crucially, this region of PrP is linked to prion resistance in?vivo, and structural changes caused by lipid binding in this region may explain the requirement for lipids in the generation of infectious prions in?vitro.  相似文献   

14.
The relationship between levels of in vivo accumulated photosensitizer (Photofrin II), photodynamic cell inactivation upon in vitro or in vivo illumination, and changing tumor oxygenation was studied in the radiation-induced fibrosarcoma (RIF) mouse tumor model. In vivo porphyrin uptake by tumor cells was assessed by using 14C-labeled photosensitizer, and found to be linear with injected photosensitizer dose over a range of 10 to 100 mg/kg. Cellular photosensitivity upon exposure in vitro to 630 nm light also varied linearly with in vivo accumulated photosensitizer levels in the range of 25 to 100 mg/kg injected Photofrin II, but was reduced at 10 mg/kg. Insignificant increases in direct photodynamic cell inactivation were observed following in vivo light exposure (135 J/cm2, 630 nm) with increasing cellular porphyrin levels. These data were inconsistent with expected results based on in vitro studies. Assessment of vascular occlusion and hypoxic cell fractions following photodynamic tumor treatment showed the development of significant tumor hypoxia, particularly at 50 and 100 mg/kg of Photofrin II, following very brief light exposures (1 min, 4.5 J/cm2). The mean hyupoxic cell fractions of 25 to 30% in these tumors corresponded closely with the surviving cell fractions found after tumor treatment in vivo, indicating that these hypoxic cells had been protected from PDT damage. Inoculation of tumor cells, isolated from tumors after porphyrin exposure, into porphyrin-free hosts, followed by in vivo external light treatment, resulted in tumor control in the absence of vascular tumor bed effects at high photosensitizer doses only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Prion diseases are caused by the misfolding and aggregation of the prion protein (PrP). Herein we provide evidence that the CuII adduct of the unstructured amyloidogenic fragment of the human PrP (PrP(91-126)) is redox active under physiological conditions. We have identified that the relevant high-affinity CuII binding region of PrP(91-126) is contained between residues 106 and 114. Both [CuII(PrP(91-126))] and [CuII(PrP(106-114))] have CuII Kd values of approximately 90 microM. Furthermore, the smaller PrP fragment PrP(106-114) coordinates CuII producing an electronic absorption spectrum nearly identical with [CuII(PrP(91-126))] (lambda max approximately 610 nm (epsilon approximately 125 M-1 cm-1)) suggesting a similar coordination environment for CuII. Cu K-edge X-ray absorption spectroscopy (XAS) reveals a nearly identical CuN(N/O)2S coordination environment for these two metallopeptides (2N/O at approximately 1.97 A; 1S at approximately 2.30 A; 1 imidazole N at approximately 1.95 A). Both display quasireversible CuII/CuI redox couples at approximately -350 mV vs Ag/AgCl. ESI-MS indicates that both peptides will coordinate CuI. However, XAS indicates differential coordination environments between [CuI(PrP(91-126))] and [CuI(PrP(106-114))]. These data indicate that [CuI(PrP(91-126))] contains Cu in a four coordinate (N/O)2S2 environment with similar (N/O)-Cu bond distances (Cu-(N/O) r = 2.048(4) A), while [CuI(PrP(106-114))] contains Cu in a four coordinate (N/O)2S2 environment with differential (N/O)-Cu bond distances (Cu-(N/O) r1 = 2.057(6) A; r2 = 2.159(3) A). Despite the differential coordination environments both Cu-metallopeptides will catalytically reduce O2 to O2*- at comparable rates.  相似文献   

16.

Background  

The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but rather modulate a subsequent step in the conversion process. Determining possible sites of self-interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further conversion into other isoforms. To this end, ovine – and bovine PrP peptide-arrays consisting of 15-mer overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-PrP).  相似文献   

17.
Zhang LY  Zheng HZ  Long YJ  Huang CZ  Hao JY  Zhou DB 《Talanta》2011,83(5):420-1720
CdTe quantum dots (QDs) were used as a highly selective probe for the detection of prion protein. Orange-emitting precipitates appeared within 30 s of the addition of recombination prion protein (rPrP) to a solution of green-emitting CdTe QDs. This allowed colorimetric qualitative and semi-quantitative detection of rPrP. The decrease in fluorescence intensity of the supernatant could be used for quantitative detection of rPrP. The fluorescence intensity of the supernatant was inversely proportional to the rPrP concentration from 8 to 200 nmol L−1 (R2 = 0.9897). Transmission electron microscopy results showed that fibrils existed in the precipitates and these were partly transformed to amyloid plaques after the addition of rPrP.  相似文献   

18.
Because of the importance of telomere DNAs, the structures of these DNAs in vivo are currently of great research interest in the medical, pharmaceutical, chemical, and industrial fields. To understand the structure of biomolecules in vivo, their properties studied in vitro are extrapolated to the in vivo condition, while the condition in a living cell is inherently molecularly crowded and a nonideal solution contains various biomolecules. We investigated the effect of molecular crowding, which is one of the most important cellular environmental conditions, on the structure and stability of the telomere and G-rich and C-rich DNAs using circular dichroism (CD) spectra, CD melting curves, and isothermal titration calorimetry (ITC). The CD spectra and CD melting curves of G-rich DNA, C-rich DNA, and the 1:1 mixture of G-rich and C-rich DNAs showed that each G-rich DNA, C-rich DNA, and the 1:1 mixture form the antiparallel G-quadruplex, I-motif, and duplex, respectively, in the noncrowding condition as previously considered. On the contrary, the G-rich and C-rich DNAs individually form the parallel G-quadruplex and I-motif, respectively, in the molecular crowding condition, and the 1:1 mixture folds into the parallel G-quadruplex and I-motif but does not form a duplex. The ITC measurements indicated that the thermodynamic stability (DeltaG degrees (20)) of the duplex formation between the G-rich and C-rich DNAs in the noncrowding condition was -10.2 kcal mol(-)(1), while only a small heat change was observed in the ITC measurements in the molecular crowding condition. These ITC results also demonstrated that the molecular crowding condition prevents any duplex formation between G-rich and C-rich DNAs. These results indicate that a structural polymorphism of the telomere DNAs is induced by molecular crowding in vivo.  相似文献   

19.
The synthesis and characterization of the first scandium arene inverted-sandwich complexes supported by a ferrocene diamide ligand (NN(fc)) are reported. Through the use of (NN(fc))ScI(THF)(2) as a precursor and potassium graphite (KC(8)) as a reducing agent, the naphthalene and anthracene complexes [(NN(fc))Sc](2)(μ-C(10)H(8)) and [(NN(fc))Sc](2)(μ-C(14)H(10)), respectively, were synthesized and isolated in moderate to high yields. Both molecular structures feature an inverted-sandwich geometry and exhibit short Fe-Sc distances. DFT calculations were employed to gain understanding of the electronic structures of these new scandium arene complexes. A variable-temperature NMR spectroscopic study of [(NN(fc))Sc](2)(μ-C(14)H(10)) indicated that two different structures are accessible in solution. Reactivity studies showed that the naphthalene complex [(NN(fc))Sc](2)(μ-C(10)H(8)) can be converted to the corresponding anthracene species [(NN(fc))Sc](2)(μ-C(14)H(10)) and that [(NN(fc))Sc](2)(μ-C(10)H(8)) can act as either a reductant or a proton acceptor. The reaction of [(NN(fc))Sc](2)(μ-C(10)H(8)) with excess pyridine led to a rare example of C-C bond formation between two pyridine rings at the para position.  相似文献   

20.
Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β‐rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer′s disease amyloid‐β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP‐amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号