首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用密度泛函理论研究了Aun(n=2-9)团簇吸附一个乙醇分子的结构和电子性质. 研究结果表明: Aun(n=2-9)团簇的最稳定构型为二维平面结构, Au6团簇最稳定; 吸附过程是通过金团簇上一个特定的金原子与乙醇分子中氧原子相互作用完成, 形成了20种稳定构型; 金原子的配位数对吸附作用影响明显; 作为吸附主体的金团簇和被吸附的乙醇分子在吸附前后构型无明显变化, 它们之间为弱相互作用.  相似文献   

2.
采用密度泛函理论对CO与钯团簇的相互作用进行了系统研究.结果表明,PdnCO(n=1-8)体系的最低能量结构是在Pdn(n=1-8)团簇最低能最结构或亚稳态结构的基础上吸附CO生长而成;CO的吸附以端位吸附为主,其吸附没有改变Pdn团簇的结构;CO分子在Pdn团簇表面发生的是非解离性吸附.与优化的CO键长(0.1166 nm)相比,除了n=2,团簇PdnCO的C-O键长为0.1167-0.1168 nm,吸附后C-O键长变化较小,CO分子被活化程度较小.电荷集居数分析表明,CO的吸附对Pdn团簇的影响比较小;二阶能量差分表明,n=4,6的团簇是相对稳定的团簇.  相似文献   

3.
采用密度泛函理论对CO与钯团簇的相互作用进行了系统研究. 结果表明, PdnCO(n=1-8)体系的最低能量结构是在Pdn(n=1-8)团簇最低能量结构或亚稳态结构的基础上吸附CO生长而成; CO的吸附以端位吸附为主, 其吸附没有改变Pdn团簇的结构; CO分子在Pdn团簇表面发生的是非解离性吸附. 与优化的CO键长(0.1166 nm)相比, 除了n=2, 团簇PdnCO的C—O键长为0.1167-0.1168 nm, 吸附后C—O键长变化较小, CO分子被活化程度较小. 电荷集居数分析表明, CO的吸附对Pdn团簇的影响比较小; 二阶能量差分表明, n=4,6的团簇是相对稳定的团簇.  相似文献   

4.
采用密度泛函理论(DFT)与耦合簇[CCSD(T)]相结合的计算方法对一系列二核铪氧簇合物Hf_2O_n~(–/0)(n=1~6)的电子结构进行了系统研究.通过密度泛函理论(DFT)计算对体系的势能面进行广泛的搜索,寻找能量最低的结构.采用广义Koopmans定理计算垂直电子逸出能(VDEs)并模拟阴离子光电子谱(PES).通过理论研究阐明了二核铪氧簇Hf_2O_n~(–/0)(n=1~6)结构演化规律,并利用分子轨道分析对二核铪氧簇Hf2On–(n=1~4)的化学成键和顺序氧化进行解释.自旋密度分析显示:除Hf_2O_5中性簇之外,其它富氧簇都存在多种类型的氧自由基:氧自由基、双自由基或超氧自由基.此外,研究发现Hf2O3中性簇中的定域Hf2+位容易与分子氧O2反应形成Hf_2O_5中性簇;Hf_2O_4~(–/0)簇合物与分子O_2作用形成Hf_2O_6~(–/0)簇合物,Hf_2O_4~(–/0)簇合物可以作为潜在的分子模型研究氧分子在铪氧化物上的活化.  相似文献   

5.
李爽  王永成  王晓莉  张玉伟  马盼盼 《化学通报》2016,79(12):1196-1199
采用密度泛函理论(DFT)中的UB3LYP方法全参数优化了(IrO_2)n(n=1~5)纳米团簇的几何构型,并对能量、频率、电子性质以及相对稳定性进行了研究。结构优化表明,当n=1,2时,团簇为平面结构,n2时为三维结构。计算结果表明,桥位O原子与Ir原子之间有更多的电荷发生转移;通过计算解离能可知(IrO_2)n(n=2~5)纳米团簇中Ir4O8为稳定分子;经计算垂直电离能和垂直电子亲和势可知n=2,4为团簇的幻数。  相似文献   

6.
用HF自洽场理论和密度泛函理论(DFT)的B3LYP方法,在6 31G水平上研究了低聚物(Cl2AlNH2)n和(H2AlNH2)n(n=1~5)簇的几何构型、电子结构和聚合反应热力学性质,比较了两个系列化合物中化学键的强度.结果表明,Cl2AlNH2和H2AlNH2分子为C2 (EC)平面型结构,其中Al-N为由一个σ键和一个键组成的双键.(Cl2AlNH2)n和(H2AlNH2)n(n=1~5)分子为Dnh对称,Al-N是典型的σ单键 .低聚物(Cl2AlNH2)n和(H2AlNH2)n的稳定性顺序分别为: 3 > 2 > 4> 5 > 1和8 > 7 > 9 > 11 > 6.  相似文献   

7.
采用密度泛函理论B3LYP方法研究了金团簇阴离子Au-2和Au-4催化CO氧化反应的详细机理.计算结果表明,O2分子比CO分子更容易吸附剑金团簇上.第二分子CO能有效降低较强O-O键断裂所需能量.CO氧化反应过程需要两个CO分子协同进行.Au-2和Au-4催化CO氧化反应均通过碳酸根中间体进行,活化能分别为0.607和0.658 eV.Au-4和Au-2都能在常温下有效催化CO氧化反应,这些结果与以前的实验和理论研究一致.  相似文献   

8.
采用密度泛函理论(DFT)的B3LYP方法,在6-311++G**水平上对CnAlm+(n=1~12,m=1,2)团簇的几何和电子结构进行了理论计算,讨论了混合团簇的结构与成键特征,以及振动频率与电荷转移.结果表明,CnAl+团簇的基态结构分别为Al原子与Cn链端基配位形成的直线或折线状结构,以及Al原子与Cn环上1个C原子端位相连或打开Cn环与2个C原子相连形成的环状结构;分子总的平均键长随着n的增大逐渐趋于定值0.138nm.CnAl+2团簇基态结构可以看作是两个较小的Cn/2Al+分子碎片通过端位C原子相互结合形成CcoreAlshell的直线或顺式与反式折线状结构;分子总的平均键长随着n的增大逐渐趋于定值0.141nm.通过对基态结构的能量分析,得到了CnAl+和CnAl+2团簇的稳定性信息.  相似文献   

9.
Pdn(n=1-7)团簇及其与甲烷相互作用的密度泛函理论研究   总被引:1,自引:0,他引:1  
姜勇  储伟  江成发  王耀红 《物理化学学报》2007,23(11):1723-1727
用密度泛函理论(DFT)的B3LYP方法, 对Pdn(n=1-7)团簇的几何结构、振动频率及其与甲烷分子间的相互作用进行了理论研究. 结果表明, 随着Pd原子数增多, 团簇结构对团簇大小的依赖性减弱, 结构参数向金属晶体趋近. 在Pdn(n=1-7)团簇上, 甲烷的表面吸附作用较弱. Pd2CH4中, 甲烷受到两个Pd原子的活化作用, 活化程度增强, 吸附能增大. 在PdnCH4 (n=1, 3-7)体系中, 甲烷的吸附能随着团簇模型的增大而减小, 趋近于其在金属晶面上的吸附能.  相似文献   

10.
利用杂化密度泛函方法B3LYP结合6-311++g(2df,2p)基组研究了(H2O)m(HBr)n(m+n≤4)混合团簇的结构及红外光谱.确定了团簇的稳定结构以及键能,发现分子间以红移氢键的形式结合形成混合团簇,且H2O分子个数为3时HBr发生解离.理论模拟了稳定结构的红外光谱,并分析了红外光谱主要吸收峰所对应的振动模式.通过自然键轨道(NBO)分析发现了红移氢键是由质子供体与质子受体间的超共轭作用决定的.  相似文献   

11.
All geometry structures of (CoMn)n (n=1-5) clusters were optimized, and the energy, frequence and magnetism of (CoMn)n (n=1-5) clusters were calculated by using the local spin density approximation and generalized gradient approximation of density functional theory. The same ground state structures of CoMn alloy clusters were confirmed in two methods, and magnetism of CoMn alloy ground state clusters was studied systemically. In order to understand structure and magnetism of CoMn alloy clusters better, Co2n (n=1-5) and Mn2n (n=1-5) clusters were calculated by the same method as alloy clusters, whose ground state structure and magnetism were confirmed. Moreover, the ground state structure and magnetism of clusters with the corresponding CoMn alloy clusters was compared. Results indicated that for (CoMn)n (n=1-4) clusters, geometry structures of CoMn alloy clusters are the same as the corresponding pure clusters still, (CoMn)3 and (CoMn)4 exhibit magnetic bistability, show ferromagnetic and anti-ferromagnetic coupling, local magnetic moment of Co, Mn atoms in CoMn alloy clusters almost preserves magnetism of pure clusters still.  相似文献   

12.
The structures and energies of Be(n)Si(n) and Be(2n)Si(n) (n = 1-4) clusters have been examined in ab initio theoretical electronic structure calculations. Cluster geometries have been established in B3LYP/6-31G(2df) calculations and accurate relative energies determined by the G3XMP2 method. The two atoms readily bond to each other and to other atoms of their own kind. The result is a great variety of low-energy clusters in a variety of structural types.  相似文献   

13.
The structure and harmonic vibrations of Ga(n)N(n) (n = 3-10) clusters have been investigated using the B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1029 cm(-1) for n = 10. Comparisons with C2n, B(n)N(n), and Al(n)N(n) clusters, the structure and bonding type for the Ga(n)N(n) (n=3-10) clusters are consistent with those of the C2n (n = 3, 5, 7, ...) clusters, the B(n)N(n) (n = 3-10), and Al(n)N(n) (n = 3-9) clusters.  相似文献   

14.
The stable structures, energies, and electronic properties of neutral, cationic, and anionic clusters of Al(n) (n = 2-10) are studied systematically at the B3LYP/6-311G(2d) level. We find that our optimized structures of Al5(+), Al9(+), Al9(-), Al10, Al10(+), and Al10(-) clusters are more stable than the corresponding ones proposed in previous literature reports. For the studied neutral aluminum clusters, our results show that the stability has an odd/even alternation phenomenon. We also find that the Al3, Al7, Al7(+), and Al7(-) structures are more stable than their neighbors according to their binding energies. For Al7(+) with a special stability, the nucleus-independent chemical shifts and resonance energies are calculated to evaluate its aromaticity. In addition, we present results on hardness, ionization potential, and electron detachment energy. On the basis of the stable structures of the neutral Al(n) (n = 2-10) clusters, the Al(n)O (n = 2-10) clusters are further investigated at the B3LYP/6-311G(2d), and the lowest-energy structures are searched. The structures show that oxygen tends to either be absorbed at the surface of the aluminum clusters or be inserted between Al atoms to form an Al(n-1)OAl motif, of which the Al(n-1) part retains the stable structure of pure aluminum clusters.  相似文献   

15.
The structures, binding energies, and electronic properties of one oxygen atom (O) and two oxygen atoms (2O) adsorption on silicon clusters Si(n) with n ranging from 5 to 10 are studied systematically by ab initio calculations. Twelve stable structures are obtained, two of which are in agreement with those reported in previous literature and the others are new structures that have not been proposed before. Further investigations on the fragmentations of Si(n)O and Si(n)O2 (n = 5-10) clusters indicate that the pathways Si(n)O --> Si(n-1) + SiO and Si(n)O2 --> Si(n-2) + Si2O2 are most favorable from thermodynamic viewpoint. Among the studied silicon oxide clusters, Si8O, Si9O, Si5O2 and Si8O2 correspond to large adsorption energies of silicon clusters with respect to O or 2O, while Si8O, with the smallest dissociation energy, has a tendency to separate into Si7 + SiO. Using the recently developed quasi-atomic minimal-basis-orbital method, we have also calculated the unsaturated valences of the neutral Si(n) clusters. Our calculation results show that the Si atoms which have the largest unsaturated valences are more attractive to O atom. Placing O atom right around the Si atoms with the largest unsaturated valences usually leads to stable structures of the silicon oxide clusters.  相似文献   

16.
17.
Zinc sulfide clusters produced by direct laser ablation and analyzed in a time-of-flight mass-spectrometer, showed evidence that clusters composed of 3, 6, and 13 monomer units were ultrastable. The geometry and energies of neutral and positively charged Zn(n)S(n) clusters, up to n = 16, were obtained computationally at the B3LYP/6-311+G level of theory with the assistance of an algorithm to generate all possible structures having predefined constraints. Small neutral and positive clusters were found to have planar geometries, neutral three-dimensional clusters have the geometry of closed-cage polyhedra, and cationic three-dimensional clusters have structures with a pair of two-coordinated atoms. Physical properties of the clusters as a function of size are reported. The relative stability of the positive stoichiometric clusters provides a thermodynamic rationale for the experimental results.  相似文献   

18.
The structural and electronic properties of Au(m)Ag(n) binary clusters (2 < or = m + n < or = 8) have been investigated by density functional theory with relativistic effective core potentials. The results indicate that Au atoms tend to occupy the surface of Au(m)Ag(n) clusters (n > or = 2 and m > or = 2). As a result, segregation of small or big bimetallic clusters can be explained according to the atomic mass. The binding energies of the most stable Au(m)Ag(n) clusters increase with increasing m+n. The vertical ionization potentials of the most stable Au(m)Ag(n) clusters show odd-even oscillations with changing m+n. The possible dissociation channels of the clusters considered are also discussed.  相似文献   

19.
The microsolvation structure of the [benzene-(methanol)(n)](+) (n = 1-6) clusters was analyzed by electronic and infrared spectroscopy. For the n = 1 and 2 clusters, further spectroscopic investigation was carried out by Ar atom attachment, which has been know as a useful technique for discriminating isomers of the clusters. The coexistence of multiple isomers was confirmed for the n = 1 and 2 clusters, and remarkably, preferential production of the specific isomers occurred in the Ar attachment. The most stable isomer of the n = 1 cluster was suggested to be of the "on-ring" structure where the nonbonding electrons of the methanol moiety directly interact with the pi orbital of the benzene cation moiety. This is a sharp contrast to [benzene-(H(2)O)(1)](+), exhibiting the "side" structure, where the water moiety is bound to the C-H sites of the benzene cation moiety. The structure of the n = 2 cluster was discussed with the help of density functional theory calculations. Spectral signatures of the intracluster proton-transfer reaction were found for n > or = 5. The intracluster electron-transfer reaction leading to the (methanol)(m)()(+) fragment was also seen upon vibrational and electronic excitation of n > or = 4.  相似文献   

20.
Ab initio simulations and calculations were used to study the structures and stabilities of copper oxide clusters, Cu(n)O(n) (n = 1-8). The lowest energy structures of neutral and charged copper oxide clusters were determined using primarily the B3LYP/LANL2DZ model chemistry. For n ≥ 4, the clusters are nonplanar. Selected electronic properties including atomization energies, ionization energies, electron affinities, and Bader charges were calculated and examined as a function of n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号