首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microelectrophoresis, dynamic light scattering, fluorescence, and microcalorimetry are used to study the adsorption of a synthetic polycation, poly-N-ethyl-4-vinylpyridinium bromide, on the surface of three-component liposomes formed from electrically neutral phosphatidylcholine, anionic diphosphatidylglycerol (cardiolipin), and cationic dicetyldimethylammonium bromide, with the two latter being taken in equal amounts. The adsorption of the polycation on the liposomal membrane results in the generation of a positive charge, which provides the polycation-liposome complex with aggregation stability. Increasing salt concentration in the suspension causes the complex to dissociate into its components. According to the microcalorimetry data, the membranes of the initial three-component liposomes consist of two microphases, with one of them being enriched with the neutral lipid and another one, with the ionic components. The polycation adsorption does not lead to noticeable structural rearrangements in the liposomal membranes.  相似文献   

2.
A series of polyampholytes of sodium-2-acrylamido-2-methylpropanesulfonate (NaAMPS) and 2-(methacryloyloxy) ethyltrimethylammonium chloride (MADQUAT) has been synthesized by free radical polymerization in microemulsions. The optimization of the formulation was, by a selection procedure, based on the hydrophile-lipophile balance (HLB) of the nonionic surfactants and solubility parameters of the different components. Both ionomers play an important role in the formulation owing to their amphiphilic and electrolyte characters as confirmed by surface tension and turbidimetry experiments. These effects control the HLB and interfacial properties of the microemulsions. The results are semi-quantitatively interpreted from the cohesive energy ratio (CER) concept. The reaction products are stable inverse latexes consisting of high molecular weight copolymers entrapped in water droplets particles and dispersed in an isoparaffinic oil.  相似文献   

3.
We present the phase behavior and thermodynamics of the catanionic mixture of the gemini surfactant hexanediyl-alpha,omega-bis(dodecyldimethylammonium bromide), designated here as 12-6-12Br(2), and sodium dodecyl sulfate (SDS) over the full range of composition, at the water-rich corner. Visual and turbidity measurements of the mixtures provide some basic macroscopic information on phase behavior. The structure of the aggregates formed spontaneously in the mixtures has been observed with TEM. As the molar fraction of SDS, X(SDS), is increased, at constant total surfactant concentration, the aggregation morphologies change gradually from gemini-rich micelles, through multiphase regions containing a precipitate (catanionic surfactant) and a vesicle region, to SDS-rich micelles. From isothermal titration calorimetry measurements, the phase boundaries and corresponding enthalpy changes for phase transitions have been obtained. The formation of the different microstructures, in particular, the spontaneously formed vesicles in the SDS-rich side, is discussed on the basis of geometric and electrostatic effects occurring in the SDS-gemini mixture.  相似文献   

4.
The phase behavior of mixed solution of newly synthesized monoglycerylcetyldimethylammonium chloride (MGCA) and sodium octyl sulfate (SOS) in water was investigated by cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and fluorescence polarizing for evaluation of the microviscosity of bilayers. No precipitate was observed in the mixed solution except at concentrations below 20 mM over all mixing ratios, and stable vesicles were formed in a considerably wide range of mixing ratio, even at the equimolar ratio. Vesicles formed in aqueous 1/1 MGCA/SOS mixture were found to exhibit no phase transition, and fluorescence polarizing measurements showed that the vesicle bilayers have a high fluidity. This flexibility allows the bilayers to have a spontaneous curvature, and thus vesicles rather than flat lamellae can be stabilized in the mixture even at the equimolar ratio. In addition, because the glycerin group of MGCA interacts strongly with water, the hydration repulsion contributes to prevent the bilayers consisting of MGCA and SOS from adhering and flocculating even though the charge neutralization between MGCA and SOS occurs at the equimolar ratio.  相似文献   

5.
It is well-established that native plasma membranes are characterized by an asymmetric distribution of charged (anionic) lipids across the membrane. To clarify how the asymmetry can affect membrane electrostatics, we have performed extensive atomic-scale molecular dynamics simulations of asymmetric lipid membranes composed of zwitterionic (phosphatidylcholine (PC) or phosphatidylethanolamine (PE)) and anionic (phosphatidylserine (PS)) leaflets. It turns out that the asymmetry in transmembrane distribution of anionic lipids gives rise to a nonzero potential difference between the two sides of the membrane. This potential arises from the difference in surface charges of the two leaflets. The magnitude of the intrinsic membrane potential was found to be 238 mV and 198 mV for PS/PC and PS/PE membranes, respectively. Remarkably, this potential is of the same sign as the membrane potential in cells. Our findings, being in reasonable agreement with available experimental data, lend support to the idea that the transmembrane lipid asymmetry typical of most living cells contributes to the membrane potential.  相似文献   

6.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

7.
8.
The influence of cationic poly(diallyldimethylammonium chloride) on the morphology and phase behavior of anionic phospholipid vesicles was investigated using differential scanning calorimetry, fluorescent microscopy and light scattering technique. A wide range of polymer concentration has been examined for the first time. The polycation can bind electrostatically to the vesicles to compensate, neutralize and reverse the vesicular charge, depending on the molar ratio of cationic to anionic group R. For R<1, charge compensation weakened the electrostatic repulsion between the lipid molecules, leading to formation of polymer-modified vesicles, each with an increased number of bilayers. The bilayer exhibits a rising main phase transition temperature from a gel to liquid crystalline state. This behavior persisted until R≈1 around the neutralization condition, where the complexes became largest and precipitate. With R>1, charge reversal took place, the complex size reduced. Interestingly, the main phase transition temperature was found for the first time to shift back towards the original value in the absence of polymer for large enough R. Although the thermal behavior was nearly independent of the polymer molecular weight, the complex morphology could be different.  相似文献   

9.
Through the use of the methods of turbidimetry, UV spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and ultracentrifugation, micelle formation is studied for cationic (polysty-rene-poly-N-ethyl-4-vinylpyridium bromide) and anionic (polystyrene-sodium polyacrylate) diblock copolymers containing identical polystyrene blocks in dilute aqueous saline solutions. Mixing of aqueous dispersions of individual micelles is accompanied by the formation of only insoluble products, which likely are intermicellar interpolyelectrolyte complexes. At the same time, mixing of diblock copolymers in a nonselective solvent and its subsequent gradient replacement with water during suppressed interpolyelectrolyte interactions yields mixed diblock copolymer micelles, which are found to be dispersionally stable in an excess of charged units of any polymer component. The micelles are composed of an insoluble polystyrene core and a mixed interpolyelectrolyte corona, and their hydrodynamic characteristics are controlled by the ratio of charged units in the mixed diblock copolymers. The mixed micelles are found to be able to interact with the macromolecules of a homopolyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions and form ternary complexes. In this case, depending on the composition of the mixed micelles, ternary complexes can be dispersionally stable or can aggregate and precipitate.  相似文献   

10.
Giant unilamellar vesicles (GUVs) represent a versatile in vitro system widely used to study properties of lipid membranes and their interaction with biomacromolecules and colloids. Electroformation with indium tin oxide (ITO) coated coverslips as electrodes is a standard approach to GUV production. In the case of cationic GUVs, however, application of this approach leads to notorious difficulties. We discover that this is related to aging of ITO-coated coverslips during their repeated use, which is reflected in their surface topography on the nanoscale. We find that mild annealing of the ITO-coated surface in air reverts the effects of aging and ensures efficient reproducible electroformation of supergiant (diameter > 100 μm) unilamellar vesicles containing cationic lipids.  相似文献   

11.
The composition of mixed micelles and mixed micelle — solution interfaces changes with the concentration and molar ratio of the cationic and anionic surfactants present. The micelle — solution interface includes besides the headgroups of both surfactants, the counterions of the surfactant in excess. The finding of an enhanced binding of counterions to mixed micelles may be of some practical importance in decontamination.  相似文献   

12.
Reported here is the correlation between the transfection efficiency of cationic liposome/DNA complexes (lipoplexes) and the structural evolution that they undergo when interacting with anionic membrane lipids. Multicomponent lipoplexes, incorporating from three to six lipid species simultaneously, presented a much higher transfection efficiency than binary lipoplexes, which are more commonly used for gene-delivery purposes. The discovery that a high transfection efficiency can be achieved by employing multicomponent complexes at a lower-than-ever-before membrane charge density of lipoplexes was of primary significance. Synchrotron small-angle X-ray diffraction (SAXD) experiments showed that anionic liposomes made of dioleoylphosphatidylglycerol (DOPG) disintegrated the lamellar phase of lipoplexes. DNA unbinding was measured by electrophoresis on agarose gels. Most importantly, structural changes induced by anionic lipids strictly depended on the lipid composition of lipoplexes. We found evidence of the existence of three different regimes of stability related to the interaction between complexes and anionic membranes. Both unstable (with low membrane charge density, sigmaM) and highly stable lipoplexes (with high sigmaM) exhibited low transfection efficiency whereas highly efficient multicomponent lipoplexes exhibited an "optimal stability". This intermediate regime reflects a compromise between two opposing constraints: protection of DNA in the cytosol and endosomal escape. Here we advance the concept that structural stability, upon interaction with cellular anionic lipids, is a key factor governing the transfection efficiency of lipoplexes. Possible molecular mechanisms underlying experimental observations are also discussed.  相似文献   

13.
Colloidal behaviors of binary mixtures composed of cationic and anionic microgels are reported. Both microgels were synthesized by aqueous free radical precipitation polymerization using N-isopropylacrylamide and N,N'-methylenebisacrylamide but using different types of water-soluble initiators and comonomer. Effects of temperature and salt concentration on phase behaviors of binary mixtures of cationic and anionic microgels were investigated as well as single-species microgels by UV-vis spectroscopy. We found that the presence of a small amount of NaCl altered the dispersing behavior of the binary mixtures of cationic and anionic microgels when they were in hydrated and swollen states. In particular, scanning electron microscope observation clarified that the binary mixtures containing a small amount of NaCl were not flocculated, and microgels showed non-close-packed structures on a planar substrate in the dry state. Furthermore, flocculations formed when both microgels were in the swollen states could be redispersed by adding a small amount of NaCl and gently stirring. These tunable properties have not been observed in mixtures of hard particles, and are due to the coexistence of electrostatic interactions and steric hindrance of highly hydrated soft particles.  相似文献   

14.
The interactions of temperature-responsive copolymers of sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) and N-isopropylacrylamide (NIPAM) with a cationic surfactant, dodecyltrimethylammonium chloride (DTAC), have been studied. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol%. The surface activity was higher for the polymers with lower AMPS content. It was found that DTAC undergoes association with the polymer chain, forming mixed polymer-surfactant micelles. The values of cac for the polymers were found in fluorescence studies using pyrene as the fluorescent probe. They were in the range 0.9-3.6x10(-3) M and were lower for polymers with higher AMPS content. An increase in DTAC concentration up to about its cmc results in a decrease of the LCST (lower critical solution temperature) of the copolymers, while further increase above the cmc results in an increase of the LCST. The minimum value of LCST in the presence of the surfactant is lower than the LCST of NIPAM homopolymer.  相似文献   

15.
Zwitterionic inverse-phosphocholine (iPC) lipids contain headgroups with an inverted charge orientation relative to phosphocholine (PC) lipids. The iPC lipid headgroup has a quaternary amine adjacent to the bilayer interface and a phosphate that extends into the aqueous phase. Neutral iPC lipids with ethylated phosphate groups (CPe) and anionic iPC lipids nonethylated phosphate groups (CP) were synthesized. The surface potential of CPe liposomes remains negative across a broad pH range and in the presence of up to 10 mM Ca(2+). CP liposomes aggregate in the presence of Ca(2+), but at a slower rate than other anionic lipids. Hydrolysis of CP lipids by alkaline phosphatases generates a cationic lipid. CPe liposomes release encapsulated anionic carboxyfluorescein (CF) 20 times faster than PC liposomes and release uncharged glucose twice as fast as PC liposomes. As such, iPC lipids afford a unique opportunity to investigate the biophysical and bioactivity-related ramifications of a charge inversion at the bilayer surface.  相似文献   

16.
A series of multilayer films were fabricated alternately from poly(4-vinylpyridine) solution and mixed solutions of two carboxyl-terminated dendrimers. UV-Vis absorption spectroscopy was applied to study the composition of the multilayer films. In contrast to mixed solutions of linear polymers, the total amount of dendrimers in multilayer film is independent of the ratio of dendrimers in mixed solution, which is possibly due to the globular conformation of the dendrimer. Furthermore, the ratio of two dendrimers in films is linearly dependent on the ratio of the two dendrimers in solutions, which facilitates control of the composition in multilayer films.  相似文献   

17.
18.
We present herein a study on the adsorption of anionic (SDS), cationic (CTAB), and nonionic (C(12)E(5)) surfactants onto anionic silica nanoparticles. The effects of this adsorption are studied by means of the static structure factor, S(q), and the collective diffusion coefficient, D(c), obtained from small-angle X-ray scattering and dynamic light scattering measurements, respectively. The effective charge on the particles was determined also from classical electrophoresis and electroacoustic sonic-amplitude measurements. The surface tension of the sample was also investigated. Of particular note is the adsorption of SDS onto the silica nanoparticles, which leads to supercharging of the interface. This has interesting repercussions for structures obtained by the layer-by-layer (LbL) technique, because emulsions stabilized with supercharged and hydrophobized silica are perfect candidates for use in a multilayer system.  相似文献   

19.
杨望生  赵国玺 《化学学报》1985,43(8):705-711
本文研究了具有双烃链的正、负离子表面活性剂混合水溶液的表面和液相性质、。负离子表面活性剂是琥珀酸二己酯磺酸钠[简写为(C6)2SNa],正离子表面活性剂是氯化二正辛基羟乙基甲基铵[(C8)2NCl]和氯化辛基羟乙基二甲基铵[C8NCl]。为了增加复合物的溶解度,在铵基上引入了羟乙基。测定了表面张力-浓度关系,用GIBBS公式计算表面吸附量和吸附分子面积。结果表明,由于正、负表面活性离子之间的强烈相互作用,所研究的两种混合物体系的表面活性远高于单独的表面活性剂。在等摩尔混合和离子强度0.1mol/kg情况下,(C6)2SNa-(C8)2NCl体系的吸附层组成是对称的(摩尔比为1:1),且在临界胶团浓度(cmc)以上析出新相,表明此cmc实质上是复合物的溶解度;而(C6)2SNa-C8NCl体系的吸附层为不对称组成(摩尔比非1:1),在cmc以上可能形成相当大的胶团,两种体系混合溶液的起泡性有极大差异。  相似文献   

20.
A suitable and sensitive ion chromatographic measuring system for determining the main components at nanogram to milligram per liter levels in water samples from the electrodeionization process is presented. A modified Dionex system offers the possibility for the determination of anions and cations in the samples at ng/L, μg/L and mg/L levels. The ng/L level of anions and cations in 20–130 mL high-purity water can be analyzed immediately after preconcentration on appropriate exchange columns. The mg/L level samples are successfully determined by use of an auto-sampler. The quantification of each ion is achieved using the suppressor technique and a conductivity detector. Samples are taken from 5 steps of the electrodeionization process and stored in pre-cleaned FEP (fluorinated ethylene propylene) at 7 °C in darkness prior to the determination of chloride, nitrate, sulfate, carbonate, sodium, ammonium, potassium, calcium and magnesium. Eluents, ultrapure water and samples for the determination of carbonate were passed through special glass containers and flushed with helium gas to avoid the effect of atmospheric carbon dioxide. Results of the investigation of the cationic and anionic composition in water samples within the electrodeionization process are presented and discussed. Received: 12 October 1998 / Revised: 16 December 1998 / Accepted: 19 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号