首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An original ultrasound (US) directly intensified photocatalytic reactor was designed to degrade azo dye pollutant methyl orange (MeO) using Degussa TiO(2) as the photocatalyst. The sonolytic, photocatalytic and sonophotocatalytic degradation of MeO in the new reactor and the synergistic effect between sonolysis and photocatalysis were investigated. Effects of operation parameters i.e., US power, TiO(2) dosage, liquid circulation velocity and air flow rate on degradation efficiency were investigated and optimized. The results showed that all parameters have optimal values for the sonophotocatalytic degradation of MeO, and the optimum conditions for the new process are US power 600 W, TiO(2) dosage 3g/L, liquid circulation velocity 4.05×10(-2) m/s and air flow rate 0.2 L/min. Under the optimum conditions, 91.52% MeO had been degraded within 1h, and the combination of sonolysis and TiO(2) photocatalysis exhibited an obvious synergetic effect.  相似文献   

2.
The development of Fe(III)/TiO(2) catalysts for sonocatalytic degradation of Reactive Blue 4 (RB4) dye in water was carried out using sol-gel method. Their surface morphology, phase transformation and surface characteristics were studied using SEM, XRD and surface analyzer, respectively. Phase transformation from amorphous to anatase occurred at 500°C and transformation of anatase to rutile phase occurred at 700°C. Complete rutile phase was formed at 900°C with corresponding increase in the particle size. Increasing in Fe(III) loading led to a reduction in the anatase phase and with the formation of weaker and broader of diffraction peaks. Surface morphology of the prepared catalyst was clearly observed with increasing calcination temperature. Surface area of the prepared catalyst decreased with increasing calcination temperature or increasing Fe(III) loading. The combination of 0.4 mol% of Fe(III)/TiO(2) with ultrasonic irradiation gave the highest sonocatalytic activity in the removal of RB4 from the aqueous solution. On the other hand, the presence of even small amount of rutile inhibited the catalytic activity of catalyst. 1.5 g/L was the optimum amount of catalyst that led to the highest sonocatalytic degradation of RB4 with an efficiency of 90%. Aeration significantly accelerated the reaction rate. Higher removal at 96% could be achieved with the combination of 0.4Fe(III)/TiO(2) and aeration under ultrasonic irradiation.  相似文献   

3.
Here, the nanometer anatase and rutile titanium dioxide (TiO(2)) powders were introduced to act as the sonocatalysts during the ultrasonic degradation of azo dye-acid red B which was chosen as model compound. The ultrasound of low power was used as an irradiation source to induce TiO(2) particles performing catalytic activity. It was found that the processes of sonocatalytic degradation were different between nanometer anatase TiO(2) and nanometer rutile TiO(2). For nanometer anatase TiO(2) catalyst, the acid red B was mainly oxidated by the holes on the surface of nanometer anatase TiO(2) particles, so that the decolorization and degradation happened at the same time. For the nanometer rutile TiO(2) catalyst, the acid red B was mainly oxidated by the *OH radicals from the ultrasonic cavitation, so that the decolorization of azo bond takes place primarily, and then the degradation of naphthyl ring does. The intermediates of acid red B in the presence of nanometer anatase and rutile TiO(2) powders have been monitored by UV-vis spectra and high performance liquid chromatography (HPLC), respectively. All experiments indicated that the degradation effect of acid red B in the presence of nanometer anatase TiO(2) powder was obviously better than that in the presence of nanometer rutile TiO(2) powder. Hence, the method of sonocatalytic degradation for organic pollutants in the presence of nanometer anatase TiO(2) powder is expected to be promising as an advisable choice for the treatment of organic wastewaters in future.  相似文献   

4.
郭莉  强小丹  杨园  牛沙 《光谱实验室》2012,29(3):1776-1780
以钛酸丁酯、无水乙醇、钨酸铵为原料,采用溶胶-凝胶法合成了WO3/TiO2复合光催化剂;采用光还原技术制备了Ag负载WO3/TiO2光催化剂,借助X射线粉末衍射(XRD)和UV-Vis光谱等技术对样品的组成和光吸收性能进行了表征,并以罗丹明B为模型污染物考察样品的光催化活性。XRD分析表明,所得粉体均为锐钛矿型纳米TiO2,且与WO3复合后,纳米TiO2特征衍射峰宽化,强度降低;UV-Vis光谱分析表明,载银使得催化剂在400—700nm的可见光区域对光响应,且在紫外光区吸收显著增强,对光具有更高的利用率;以罗丹明B为降解物的光催化实验表明,WO3复合对纳米TiO2光催化活性有显著的影响,而载Ag后其光催化活性进一步提高,将该光催化剂用于炼油厂废水的处理,效果较好。  相似文献   

5.
"应用溶剂蒸发自组装的方法合成了具有蠕虫状孔道的介孔二氧化钛粉末和薄膜.考察了不同焙烧温度对材料介孔结构和光催化性能的影响.乙醛光催化降解实验用来表征不同焙烧温度下介孔材料的光催化性能.结果表明实验中合成的介孔二氧化钛材料的光催化活性明显高于颗粒二氧化钛(Degussa P25).其中400 oC焙烧的样品具有平均孔径为6.0 nm的窄的孔径分布和117 m2/g的大的比表面积.通过对光催化活性结果的分析,发现介孔二氧化钛的活性主要受其比表面积和结晶性的共同影响.对介孔二氧化钛薄膜材料进行了同样的光催化表  相似文献   

6.
"利用RuO2/TiO2前驱体溶胶,采用溶胶-凝胶-浸渍法在漂珠(FP)表面沉积RuO2/TiO2膜,经120 ℃干燥、500 ℃焙烧制备复合光催化剂RuO2/TiO2/FP,并通过SEM、XRD以及FT-IR分别对其结构进行了表征. 结果表明,RuO2/TiO2膜的平均厚度(三层)约1 1m,膜材料中TiO2主要呈现锐钛矿型结构,而RuO2是以非晶态高度分散在粒子表面.以高效氯氰菊酯杀虫剂的光催化降解为模型反应,研究了RuO2/TiO2/FP的光催化性能,探讨了影响催化剂活性的因素及采用太阳光做光源处理  相似文献   

7.
以钛酸四丁酯为前躯物,采用溶胶-凝胶法制备了掺杂不同含量Pr的TiO2光催化剂,利用XRD,TG-DTA,AFM,UV-Vis,FTIR等手段对催化剂进行了表征。并通过酸性品红光催化降解实验对其光催化性能进行了评价,考查了实验条件,如催化剂用量,烧结温度,掺杂量等对催化剂催化活性的影响。Pr2O3的掺杂阻碍了TiO2晶相由锐钛矿型向金红石型的转变,使TiO2的粒径减小,比表面积增大,催化活性增强。当Pr掺杂量为0.8%,催化剂用量为0.03g,烧结温度为500℃时,酸性品红的降解率达到97%以上,酸性品红的降解反应为准一级反应。  相似文献   

8.
Fe-fullerene/TiO(2) composite catalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The catalytic activities were evaluated by the catalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/TiO(2) composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/TiO(2) composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/TiO(2) composite. The degradation of MB solution by ultrasonic irradiation in the presence of Fe-fullerene/TiO(2) compounds was investigated in complete darkness. With the increase in the amount of Fe, the degradation rate of methylene blue solution also increased.  相似文献   

9.
In this study, carbon nanotubes (CNTs)/TiO2 composite were prepared and the sonophotocatalytic activity of CNTs/TiO2 nanoparticles was investigated, in which methyl orange (MO) was chosen as an object. The results indicate that the photocatalytic efficiency of CNTs/TiO2 remarkable increases in the presence of ultrasound, and the sonophotocatalysis process followed a first-order kinetics. The kinetic constant of CNTs/TiO2 for the MO degradation is 2.2 times higher than that of P25, which indicated that the sonophotocatalytic ability of CNTs/TiO2 is obviously higher than P25 powder.  相似文献   

10.
Ti(SO4)2水热法制纳米SO2-4/TiO2光催化剂的光谱研究   总被引:7,自引:0,他引:7  
以Ti(SO4) 2 水溶液为前驱物 ,尿素为沉淀剂 ,采用水热沉淀 加热分解 浸渍烧结法制备纳米SO2 -4/TiO2 固体超强酸光催化剂 ,并用XRD ,BET ,FTIR ,DRS和FS等对中间态粒子和产物进行表征 ,以光催化降解罗丹明B为模型反应 ,筛选制备SO2 -4/TiO2 光催化剂的优化条件。结果表明 ,用Ti(SO4) 2 为前驱物 ,水热法能在较低的温度、弱碱性介质中 ,得到纳米锐钛矿型TiO2 晶体 ;在 30 0℃下控制焙烧 4h ,基本能使水热反应副产物 (NH4) 2 SO4等分解 ,又避免H2 SO4大量的流失 ;SO2 -4负载量和烧结时间是影响SO2 -4/TiO2 光催化活性的主要因素 ,当SO2 -4负载量 11%、烧结温度 4 5 0℃时 ,制备的SO2 -4/TiO2 光催化剂活性较高 ,达P 2 5光催化剂的水平  相似文献   

11.
Rutile and anatase titanium dioxide (TiO(2)) powders were used as sonocatalysts for the degradation of methyl orange which was used as a model compound. Ultrasound was used as an irradiation source. It was found that the sonocatalytic degradation ratios of methyl orange in the presence of TiO(2) powder were much better than ones without any TiO(2), but the sonocatalytic activity of rutile TiO(2) particles was obviously higher than that of anatase TiO(2) particles. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results show that the best degradation ratio of methyl orange can be obtained when the experimental conditions of the initial methyl orange concentration of 10 mg/l, rutile TiO(2) added amount of 500 mg/l, ultrasonic frequency of 40 kHz, output power of 50 W, pH=3.0 and 40 degrees C within 150 min were adopted. In addition, the catalytic activity of reused rutile TiO(2) catalyst was also studied and found to be better than new rutile TiO(2) catalyst sometimes. All experimental results indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO(2) powder was an advisable choice for treating non- or low-transparent organic wastewaters.  相似文献   

12.
光催化剂SO2- 4/TiO2和TiO2 的光谱行为比较   总被引:3,自引:0,他引:3  
用IR、Raman和DRS光谱研究了SO^2-4/TiO2光催化剂和TiO2光催化剂的光谱行为差别。结果表明,TiO2光催化剂的表面只有L酸中心,而SO^2-4/TiO2光催化剂表面既有L酸中心也有B酸中心。TiO2的硫酸化有效地抑制了晶相转变和晶粒度的增加。与TiO2相比,SO^2-4/TiO2光催化剂的锐钛矿相含量较多、晶粒较小、光谱吸收边蓝移,从而增大了光吸收阈值,增强了光生空穴和电子的氧化  相似文献   

13.
Sonophotoelectrocatalytic degradation of azo dye on TiO2 nanotube electrode   总被引:1,自引:0,他引:1  
The degradation of azo dye, methyl orange (MeO) in aqueous solution with sonophotoelectrocatalytic process was investigated. The TiO(2) nanotubes were used as electrode in photoelectrocatalytic (PEC), sonophotoelectrocatalytic (SPEC) processes or as photocatalyst in photocatalytic (PC), sonophotocatalytic (SPC) processes, respectively. Experimental results showed that the hybrid processes could efficiently enhance the degradation efficiency of MeO, and followed pseudo-first-order kinetics. At the optimized experimental conditions, the rate constants of decolorization of MeO were 0.0732 min(-1) for SPEC process; 0.0523 min(-1) for PEC process, 0.0073 min(-1) for SPC process and 0.0035 min(-1) for PC process. The rate constants obviously indicated that there existed synergistic effect in the ultrasonic, electro-assisted and photocatalytic processes.  相似文献   

14.
基于TiO2光催化剂的优良光催化活性,采用酸性溶胶法合成了TiO2柱撑蒙脱土复合光催化剂,利用IR,UV-Vis,TG/DTA,XRD及SEM等手段对复合催化剂进行了表征,通过太阳光对酸性品红光催化降解实验,考察了催化剂的光催化活性。该催化剂比纳米TiO2对酸性品红的光催化降解反应表现出更高的催化活性,而且更易于沉降、回收。当TiO2柱撑蒙脱土光催化剂的用量为0.2 g.(100 mL)-1,酸性品红溶液的pH值为3时,在太阳光下40 min内酸性品红基本降解完全,而且该降解过程符合Langmuir-Hin-shelwood方程。X射线衍射(XRD)分析表明钛柱撑蒙脱土的层间距较钠基蒙脱土有明显的增大,紫外-可见吸收光谱表明TiO2柱撑蒙脱土比纳米TiO2具有更高的光吸收效率。  相似文献   

15.
本研究采用基于密度泛函理论的第一性原理方法,对纯锐钛矿TiO2及贵金属(Ru、Pd、Pt、Ag和Au)掺杂锐钛矿TiO2的晶格结构、能带结构、电子态密度及光学性质进行了计算。结果表明:贵金属掺杂后TiO2的晶格体积都出现了不同程度的增大;Pd和Pt掺杂后TiO2体系的禁带宽度减小,Ru、Ag和Au掺杂后体系表现出了一定的金属属性,五种贵金属掺杂TiO2后吸收光谱都有红移的趋势。掺杂形成能计算表明,除Ru金属外,富氧条件下掺杂更容易实现。  相似文献   

16.
Sonodynamic therapy is expected to be a novel therapeutic strategy for malignant gliomas. The titanium dioxide (TiO(2)) nanoparticle, a photosensitizer, can be activated by ultrasound. In this study, by using water-dispersed TiO(2) nanoparticles, an in vitro comparison was made between the photodynamic and sonodynamic damages on U251 human glioblastoma cell lines. Water-dispersed TiO(2) nanoparticles were constructed by the adsorption of chemically modified polyethylene glycole (PEG) on the TiO(2) surface (TiO(2)/PEG). To evaluate cytotoxicity, U251 monolayer cells were incubated in culture medium including 100 μg/ml of TiO(2)/PEG for 3h and subsequently irradiated by ultraviolet light (5.0 mW/cm(2)) or 1.0MHz ultrasound (1.0 W/cm(2)). Cell survival was estimated by MTT assay 24h after irradiation. In the presence of TiO(2)/PEG, the photodynamic cytotoxic effect was not observed after 20 min of an ultraviolet light exposure, while the sonodynamic cytotoxicity effect was almost proportional to the time of sonication. In addition, photodynamic cytotoxicity of TiO(2)/PEG was almost completely inhibited by radical scavenger, while suppression of the sonodynamic cytotoxic effect was not significant. Results of various fluorescent stains showed that ultrasound-treated cells lost their viability immediately after irradiation, and cell membranes were especially damaged in comparison with ultraviolet-treated cells. These findings showed a potential application of TiO(2)/PEG to sonodynamic therapy as a new treatment of malignant gliomas and suggested that the mechanism of TiO(2)/PEG mediated sonodynamic cytotoxicity differs from that of photodynamic cytotoxicity.  相似文献   

17.
SO2-4/TiO2固体酸的红外和拉曼光谱研究   总被引:18,自引:0,他引:18  
用IR、Raman光谱研究了SO^2-4/TiO2固体酸在不同烧温度下的结构、晶相转变和表面酸中心。结果表明,SO^2-4与TiO2表面的结合为螯合式双配结构。当烧结温度小于500℃时,SO^2-4/TiO2样品具有较高的结构稳定性,晶相结构以锐钛矿为主,表面B酸位数目约是L酸位数目的2倍,当烧结温度大于500℃时,随着烧结晶度的升高,表面结合的SO^2-4逐渐流失,晶相从锐钛矿转变为金红石,表面B酸位减少并消失。  相似文献   

18.
Anatase TiO(2)-CNT catalysts with high specific surface areas were prepared by depositing TiO(2) particles on the surface of carbon nanotubes (CNTs) using a modified sol-gel technique. These catalysts prepared with different amounts of CNTs were characterized by nitrogen adsorption, Fourier Transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray (EDX) and ultraviolet-visible (UV-Vis) spectroscopy. The catalytic activity of the anatase TiO(2)-CNT catalysts was assessed by examining the degradation of methylene blue (MB) from model aqueous solutions as a probe reaction under visible light and ultrasonic irradiation. The synergistic effect of the greater surface area and catalytic activities of the composite catalysts was examined in terms of the strong adsorption ability and interphase interaction by comparing the different amounts and roles of CNTs in the catalysts.  相似文献   

19.
The transition crystal TiO(2) sonocatalyst was prepared utilizing the method of ultrasonic irradiation in hydrogen peroxide solution. The sonocatalytic activity of the transition crystal TiO(2) powder was validated through the degradation of methyl orange in aqueous solution by ultrasonic irradiation. The results show that the sonocatalytic activity of the transition crystal TiO(2) powder is obviously higher than that of pure rutile and anatase TiO(2) powders as well as mixed rutile and anatase TiO(2) powders according to the proportion of corresponding transition crystal TiO(2) catalyst. The degradation ratio of methyl orange in the presence of the transition crystal TiO(2) catalyst surpasses 75% within 80 min ultrasonic irradiation, while the degradation ratios are 55.93%, 51.68% and 40.88%, respectively, for rutile, mixed and anatase TiO(2) powders.  相似文献   

20.
In this work, the emphasis was mainly placed on investigating the sonocatalytic activity of TiO(2)-ZnO mixed with Er(3+):YAlO(3), namely, Er(3+):YAlO(3)/TiO(2)-ZnO composite. It is able to utilize the sonoluminescence light to improve the sonocatalytic degradation of organic dyes. The Er(3+):YAlO(3) as up-conversion luminescence agent was synthesized by sol-gel and auto-combustion method, and then Er(3+):YAlO(3)/TiO(2)-ZnO composite as sonocatalyst were prepared by ultrasonic dispersion and liquids boil method. The prepared up-conversion luminescence agent and composites were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Acid Red B dye was selected to examine the sonocatalytic activity of Er(3+):YAlO(3)/TiO(2)-ZnO composite. The degradation reaction processes were monitored by UV-vis spectrophotometer and ion chromatogram. The influences on the activity of the Er(3+):YAlO(3)/TiO(2)-ZnO such as Ti/Zn molar ratio, heat-treated temperature and heat-treated time were studied. The results showed that the Er(3+):YAlO(3)/TiO(2)-ZnO composite exhibited a significantly high sonocatalytic activity compared with other catalysts in the degradation of Acid Red B. And the sonocatalyst with 1:1 Ti/Zn molar ratio heat-treated at 550°C for 60min showed the highest sonocatalytic activity. At last, the experiment also indicated that it has a good sonocatalytic activity to degrade other organic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号