首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
ZSM-5 monolith of uniform mesoporous channels   总被引:6,自引:0,他引:6  
A ZSM-5 monolith of uniform mesopores(meso-ZSM-5) was synthesized with the template method using carbon aerogel of uniform mesopores of great pore volume. The pore size distribution determined by N2 adsorption showed the presence of mesopores with an average pore width of 11 nm and micropores with an average pore width of 0.51 nm. Field emission scanning electron micrograph observation revealed the presence of uniform mesopores. X-ray diffraction and FT-IR provided evidence that the synthesized meso-ZSM-5 monolith has a highly crystalline ZSM-5 structure.  相似文献   

2.
Mesoporous carbons (MCs) with a high surface area (up to 900 m2/g), large pore volume (up to 2.1 cm3/g), high mesopore ratio (94%), and high yield (70%) were successfully prepared from an AR mesophase pitch, using a commercially nanosized silica template. The removal of the template provided some larger mesopores of 25-50 nm (pore I) with a surface area of ca. 300 m2/g, while the successive carbonization opened the closed pores within the carbon body to give smaller mesopores of 2-10 nm (pore II) with a similar surface area. During the carbonization of pitch precursor, the evaporation of volatile components swells the carbon to introduce the second mesopores among the domains and even microdomain units because of their rearrangements and overlappings in the process. The addition of iron salt with the silica template resulted in a remarkable increase of the surface area (ca. 300 m2/g) by introducing mesopores of 3-5 nm. The resultant MCs maintained some graphitizable natures derived from the anisotropic precursor. Their graphitization at 2400 degrees C provided the graphitic structure with large surface areas (270-460 m2/g) and mesoporosity.  相似文献   

3.
Porous silica exhibiting a hierarchically ordered trimodal pore system with a well-defined reverse opal microstructure and bimodal mesoporosity in the walls has been prepared by using polystyrene latex spheres, a novel block copolymer and an ionic liquid surfactant as templates. The resulting materials exhibit hierarchical order at three length scales (small mesopores: 2-3 nm; large mesopores: 11-12 nm; macropores: 360 nm).  相似文献   

4.
Limited strategies have been established to prepare monodisperse mesoporous carbon nanospheres (MCNs) with tailored pore sizes. In this work, a method is reported to synthesize MCNs by combining polymerization of aniline with co‐assembly of colloidal silica nanoparticles. The controlled self‐assembly behavior of colloidal silica enables the formation of uniform composite nanospheres and convenient modulation over mesopores. After carbonization and removal of sacrificial templates, the resultant MCNs possess tunable mesopores (7–42 nm) and spherical diameters (90–300 nm), as well as high surface area (785–1117 m2 g?1), large pore volume (1.46–2.01 cm3 g?1) and abundant nitrogen moieties (5.54–8.73 at %). When serving as metal‐free electrocatalysts for the oxygen reduction reaction (ORR), MCNs with an optimum pore size of 22 nm, compared to those with 7 and 42 nm, exhibit the best ORR performance in alkaline medium.  相似文献   

5.
The mesoporous silica materials had a high loading efficiency of sirolimus-SMEDDS. The length of the mesopores played a more important role than the pore diameter in drug dissolution and in vivo absorption.  相似文献   

6.
Large-pore ethenylene-bridged (-CH═CH-) and phenylene-bridged (-C(6)H(4)-) periodic mesoporous organosilicas (PMOs) with face-centered-cubic structure (Fm3m symmetry) of spherical mesopores were synthesized at 7 °C at low acid concentration (0.1 M HCl) using Pluronic F127 triblock copolymer surfactant in the presence of aromatic swelling agents (1,3,5-trimethylbenzene, xylenes-isomer mixture, and toluene). In particular, this work reports an unprecedented block-copolymer-templated well-ordered ethenylene-bridged PMO with cubic structure of spherical mesopores and an unprecedented block-copolymer-templated face-centered cubic phenylene-bridged PMO, which also has an exceptionally large unit-cell size and pore diameter. The unit-cell parameters of 30 and 25 nm and the mesopore diameters of 14 and 11 nm (nominal BJH-KJS pore diameters of 12-13 and 9 nm) were obtained for ethenylene-bridged and phenylene-bridged PMOs, respectively. Under the considered reaction conditions, the unit-cell parameters and pore diameters were found to be similar when the three different methyl-substituted benzene swelling agents were employed, although the degree of structural ordering appeared to improve for phenylene-bridged PMOs in the sequence of decreased number of methyl groups on the benzene ring.  相似文献   

7.
Silica particles with lamellar and wormhole-like bi-modal mesopores have been synthesized using anionic surfactant (N-lauroylsarcosine sodium) as the template. The particles with diameters of 300―500 nm possess bi-modal mesopores with pore sizes of 3 nm and 12 nm, which were ascribed to the disordered wormhole-like mesophase and lamellar mesophase, respectively. The BET surface area of the particles was 536 m2/g and the pore volume was 0.83 cm3/g. The lamellar mesophase and cylindrical mesophase were formed...  相似文献   

8.
Ordered silicas with large (9-15 nm), uniform, cagelike mesopores were synthesized under acidic aqueous conditions from tetraethyl orthosilicate in the presence of sodium chloride using poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer B50-6600 (EO39BO47EO39, Dow Chemicals) as a supramolecular template. Except for the use of NaCl in our case, the synthesis mixture composition was the same as that originally reported by Zhao et al. for the synthesis of FDU-1 silica, which was later shown to exhibit a cubic close-packed (Fm3m) structure with stacking faults related to the occurrence of hexagonal close-packed stacking sequences. The copolymer-templated silicas were formed at room temperature and in most cases were subjected to the hydrothermal treatment at 373 or 393 K. The calcined materials were characterized using small-angle X-ray scattering (SAXS) and nitrogen and argon adsorption at 77 K. SAXS patterns were generally similar to those reported for FDU-1 silica, indicating the cubic close-packed (Fm3m) structure, but the presence of stacking faults characteristic of a hexagonal close-packed structure cannot be precluded. The addition of the salt was found to significantly narrow the pore size distributions and to improve the uniformity of entrances to the cagelike mesopores, whereas the pore diameter, specific surface area, and pore volume were similar (in most cases slightly lower) to those for FDU-1 silicas obtained in the absence of NaCl. The materials synthesized in the presence of NaCl also appeared to have better resolved SAXS patterns. The feasibility of tailoring the pore cage diameter (from approximately 9.5 to 14.5 nm) and pore entrance diameter (from below 4 to approximately 8 nm) simply by adjusting the hydrothermal treatment temperature and time was demonstrated, indicating that these simple and convenient ways of structural design of cagelike mesopores are operative in the case of syntheses in the presence of inorganic salts.  相似文献   

9.
A mesoporous solid with crystalline walls and an ordered pore structure exhibiting a bimodal pore size distribution (3.3 and 11 nm diameter pores) has been synthesized. Previous attempts to synthesize solids with large ordered mesopores by hard templating focused on the preparation of templates with thick walls (the thick walls become the pores in the target materials), something that has proved difficult to achieve. Here the large pores (11 nm) do not depend on the synthesis of a template with thick walls but instead on controlling the microporous bridging between the two sets of mesopores in the KIT-6 template. Such control determines the relative proportion of the two pore sizes. The wall thickness of the 3D cubic NiO mesopore has also been varied. Preliminary magnetic characterization indicates the freezing of uncompensated moments or blocking of superparamagnetism.  相似文献   

10.
Small-mesopore-added silicalite-1 zeolites were prepared by using single wall carbon nanohorn (SWCNH) as a template. The samples were characterized with X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM) and molecular probe adsorption methods. The pore size distributions determined with N2 adsorption at 77 K showed the presence of small mesopores in 2–4 nm pore widths, in addition to their intrinsic micropores of 0.58 nm. The mesopore volume was 0.06 cm3 g?1. The presence of small mesopores in the SWCNH-templated silicalite-1 zeolites was supported with TEM observation as well as the liquid phase adsorption of methylene blue, which was much higher than that on a bulk (purely microporous) silicalite-1.  相似文献   

11.
The incorporation of CdS nanoparticles, prepared in reverse micellar systems, into thiol-modified mesoporous silica, such as FM41 (functionalized MCM-41) and FM48 (functionalized MCM-48), has been investigated. The nanoparticles were immobilized in the mesopores via the incorporation of water droplets of the reverse micelles. A particle-sieving effect for FM41 having large (L-FM41, 3.8 nm) and medium (M-FM41, 3.6 nm) pore size was observed, in that the incorporation of the CdS nanoparticles was decreased with increasing particle size and with decreasing pore size of the FM41. Chemical vapor deposition treatment employed to narrow the mesopores of the CdS-FM41 enhanced the stability of CdS nanoparticles against heat treatment. The CdS-FM41 composites demonstrated photocatalytic activity for H(2) generation from 2-propanol aqueous solution, the better photocatalytic activity being obtained with the larger pore size for CdS-L-FM41. Copyright 2001 Academic Press.  相似文献   

12.
In this work we report molecular simulation results for argon and krypton adsorption on atomistic models of templated mesoporous silica materials. These models add atomistic levels of detail to mesoscale representations of these porous materials, which were originally generated from lattice Monte Carlo simulations mimicking the synthesis process of templated mesoporous silicas. We generate our atomistic pore models by carving out of a silica block a ‘mathematically-smooth’ representation of the pores from lattice MC simulations. Following that procedure, we obtain a model material with mean mesopore and micropore diameters of 5.4 nm and 1.1 nm, respectively (model A). Two additional model materials were considered: one with no microporosity, and with mesopores similar to those of model A (model B), and a regular cylindrical pore (model C). Simulation results for Ar and Kr adsorption on these model materials at 77 K and 87 K shows that model A provides the best agreement with experimental data; however, our results suggest that fine-tuning the microporosity and/or the surface chemistry (i.e., by decreasing the density of OH groups at the pore surface) of model A can lead to better agreement with experiments. The filling of the mesopores in model materials A and B proceeded via a classical capillary condensation mechanism, where the pores fill at slightly different pressures. This observation contrasts with what was observed in our previous study (Coasne, et al. in Langmuir 22:194–202, 2006), where we considered atomistic silica mesopores with an important degree of surface roughness at length scales below 10 Å, for which we observed a quasi-continuous mesopore filling involving intermediate phases with liquid-like “bridges” and gas-like regions. These results suggest that pore surface roughness, and other morphological features such as constrictions, play an important role in the mechanism of adsorption and filling of the mesopores.  相似文献   

13.
聚二乙烯苯型多孔吸附剂的纳米孔结构表征   总被引:6,自引:0,他引:6  
采用氮气吸附法 ,研究聚二乙烯苯多孔吸附剂的纳米孔结构 .结果表明 ,以甲苯 液体石蜡 (2 :1)为致孔剂制备的聚二乙烯苯多孔吸附剂 ,其比表面和孔体积随致孔剂用量增大而增加 .在二乙烯苯总含量相当时 ,m 二乙烯苯与p 二乙烯苯等比例混合制备的吸附剂 ,具有最大的比表面和孔体积 ,而聚m 二乙烯苯吸附剂和聚p 二乙烯苯吸附剂依次下降 .中孔分布研究说明 ,各种吸附剂的中孔主要分布在 2~ 2 0nm之间 ,其中在5nm附近存在一个明显的分布峰 ,是吸附剂在制备时由于致孔剂的存在而在微核 微核之间形成的孔 .微孔分布研究发现 ,聚m 二乙烯苯吸附剂和聚p 二乙烯苯吸附剂的微孔集中分布在 0 .4~ 1.2nm之间 ,这些微孔可能是微核内部不规整聚集的高分子链之间的缝隙和紧密接触的微核之间的缝隙 .用扫描电镜观察吸附剂内部 ,显示吸附剂的确是由微核聚集形成的 ,其间存在着大小不同的纳米尺度的空隙  相似文献   

14.
Highly ordered mesoporous SBA-15 silica with large pore diameter of 18 nm (nominal BJH pore diameter ~22 nm) and short pore length (~500 nm) was synthesized using a micelle expander 1,3,5-triisopropylbenzene in the absence of ammonium fluoride by employing short initial stirring time at 17 °C followed by static aging at low temperature. Scanning and transmission electron microscopies revealed that the material comprised of platelet particles in which large mesopores were nearly flawlessly arranged within uniform domains up to 3 μm in size. The platelet SBA-15 had the (100) interplanar spacing of 17 nm, high surface area (~470 m(2) g(-1)) and large pore volume (~1.6 cm(3) g(-1)). The hydrothermal treatment at 130 °C for 2 days was employed to eliminate constrictions from the pore channels. The control experiment showed that a sample prepared with prolonged stirring had very similar mesoporous properties, but the particle size was smaller and the domains were irregular, proving that the static conditions facilitate the formation of SBA-15 with platelet particle morphology. The absence of ammonium fluoride was also critical in attaining the platelet particle shape.  相似文献   

15.
测定了3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭 (SSAC) 和剑麻基活性碳纤维 (SACF) 的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征。结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的极微孔;在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上。两者相比,SACF的中孔量和平均孔径更大。3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

16.
The architecture of mesoporous silica was successfully controlled by adjusting the concentrations of a cationic surfactant and ammonia. An excess amount of the surfactant suppressed the grain growth and then induced the formation of small grains with a diameter below 20 nm. Consequently, assembly of the small-sized grains produced a bimodal pore structure consisting of framework mesopores of 2-3 nm and textural mesopores ranging over 10-100 nm.  相似文献   

17.
A facile synthesis of micro- and mesoporous carbons has been proposed using colloidal silica nanoparticles with diameter of ∼24 nm and poly(vinylidene chloride-co-vinyl chloride) (Saran) as a carbon precursor. The resulting carbons possessed large specific surface area, ∼800 m2/g, and approximately the same volume of micro- and mesopores, each about 50% of the total pore volume. While the size of micropores was around 1 nm, the large and uniform spherical mesopores (about 24 nm) resemble the diameters of silica colloids used. Nitrogen adsorption measurements proved that these mesopores were interconnected and accessible. The well-developed microporosity was created mainly by decomposition of Saran copolymer during carbonization.  相似文献   

18.
The structural and adsorptive characteristics of six activated carbons were studied by means of nitrogen and benzene adsorption and water desorption. Tert-butylbenzene (TBB) breakthrough dynamics was analyzed by using several integral equations solved with a regularization/singular-value decomposition procedure. TBB interaction with texturally different activated carbons with the presence of preadsorbed or adsorbed water under dynamic conditions was illustrated by the breakthrough plots handled with several models. The influence of the type of activated carbons, their pore size distributions, water vapor, and TBB flow rate on the breakthrough times (tb) and the dynamic capacity of the carbon beds has been explored with better results for a carbon sample possessing a maximal contribution of mesopores at half-width x>1.5 nm among the carbons studied (which also appears on benzene adsorption) and a major contribution of microporocity as VDS/Vp approximately 0.88 and SK/SBET approximately 0.15. Another adsorbent, which is characterized by a similar total porosity but a larger micropore volume, a smaller contribution of mesopores (SK/SBET approximately 0.08), greater total and miroporous specific surface areas, and greater intensity of the pore size distribution at x<1.5 nm, shows the second result in dynamic TBB retention.  相似文献   

19.
We report experimental results on the structure and melting behavior of ice confined in multi-walled carbon nanotubes and ordered mesoporous carbon CMK-3, which is the carbon replica of a SBA-15 silica template. The silica template has cylindrical mesopores with micropores connecting the walls of neighboring mesopores. The structure of the carbon replica material CMK-3 consists of carbon rods connected by smaller side-branches, with quasi-cylindrical mesopores of average pore size 4.9 nm and micropores of 0.6 nm. Neutron diffraction and differential scanning calorimetry have been used to determine the structure of the confined ice and the solid-liquid transition temperature. The results are compared with the behavior of water in multi-walled carbon nanotubes of inner diameters of 2.4 nm and 4 nm studied by the same methods. For D(2)O in CMK-3 we find evidence of the existence of nanocrystals of cubic ice and ice IX; the diffraction results also suggest the presence of ice VIII, although this is less conclusive. We find evidence of cubic ice in the case of the carbon nanotubes. For bulk water these crystal forms only occur at temperatures below 170 K in the case of cubic ice, and at pressures of hundreds or thousands of MPa in the case of ice VIII and IX. These phases appear to be stabilized by the confinement.  相似文献   

20.
The effect of confinement of an acetonitrile-water mixture, whose correlation length was comparable to the pore size of the mesopores of MCM-41 (d=2.4-3.6 nm), on the phase changes was studied. Used techniques were low temperature differential scanning calorimetry and Fourier transform infrared spectroscopy, where the phase separation, lowering of the freezing and melting temperatures, and phase transitions of the acetonitrile were detected. The latter occurred in the mesopores at temperatures similar to that of the pure liquid, while the melting temperature of the water in the mesopores<3.1 nm decreased markedly at higher acetonitrile contents, suggesting a marked lowering of ice crystallite size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号