首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relaxation rates for O2(1Σg+) by nonradiative pathways have been determined using the fast-flow technique. O2(1Σg+) is formed from O2(1Δg) by an energy pooling process. O2(1Δg) is generated by passing purified oxygen through a microwave discharge. Oxygen atoms are removed by distilling mercury vapor through the discharge zone. It has been observed that the wall loss rate for O2(1Σg+) decreases with increasing pressure of oxygen and thus appears to be diffusion controlled. Quenching rate constants for O2, N2, and He have been determined and found to be (1.5 ± 0.1) × 104, (1.0 ± 0.05) × 106 and (1.2 ± 0.1) × 105 l./mol·sec, respectively.  相似文献   

2.
This paper reports the results of the chemical composition modeling for an atmospheric pressure DC air discharge with water cathode. The modeling was based on the combined solution of Boltzmann equation for electrons, equations of vibrational kinetics for ground states of N2, O2, H2O and NO molecules, equations of chemical kinetics and plasma conductivity equation. Calculations were carried out using experimental values of E/N and gas temperatures for the discharge currents range of 20–50 mA. The effect of H2O concentration on the plasma composition was studied. The main particles of plasma were shown to be O2(a1Δ, b1Σ), O(3P), NO, NO2, HNO3, H2O2 and OH. Effective vibrational temperatures of molecules were higher than gas temperature and they did not depend on the discharge current. Distribution functions on vibrational levels for N2, O2, H2O and NO ground states were non-equilibrium ones.  相似文献   

3.
The large internal surface areas and outstanding electrical and mechanical properties of graphene have prompted to blend graphene with NiCo2O4 to fabricate nanostructured NiCo2O4/graphene composites for supercapacitor applications. The use of graphene as blending with NiCo2O4 enhances the specific capacitance and rate capability and improves the cyclic performance when compared to the pristine NiCo2O4 material. Here, we synthesized two different nanostructured morphologies of NiCo2O4 on graphene sheets by solvothermal method. It has been suggested that the morphologies of oxides are greatly influenced by dielectric constant, thermal conductivity, and viscosity of solvents employed during the synthesis. In order to test this concept, we have synthesized nanostructured NiCo2O4 on graphene sheets by facile solvothermal method using N-methyl pyrrolidone and N,N-dimethylformamide solvents with water. We find that mixture of N-methyl pyrrolidone and water solvent favored the formation of nanonet-like NiCo2O4/graphene (NiCoO-net) whereas mixture of N,N-dimethylformamide and water solvent produced microsphere-like NiCo2O4/graphene (NiCoO-sphere). Electrochemical pseudocapacitance behavior of the two NiCo2O4/graphene electrode materials was studied by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy techniques. The supercapacitance measurements on NiCoO-net and NiCoO-sphere electrodes showed specific capacitance values of 1060 and 855 F g?1, respectively, at the current density of 1.5 A g?1. The capacitance retention of NiCoO-net electrode is 93 % while that of NiCoO-sphere electrode is 77 % after long-term 5000 charge-discharge cycles at high current density of 10 A g?1.  相似文献   

4.
The generation of metastable O2(1Σg+) and O2(1Δg) in the H + O2 system of reactions was studied by the flow discharge chemiluminescence detection method. In addition to the O2(1Σg+) and O2(1Δg) emissions, strong OH(v = 2) → OH(v = 0), OH(v = 3) → OH(v = 1), HO2(2A000) → HO2(2A000), HO2(2A001) → HO2(2A000), and H O2(2A200) → HO2(2A000) emissions were detected in the H + O2 system. The rate constants for the quenching of O2(1Σg+) by H and H2 were determined to be (5.1 ± 1.4) × 10?13 and (7.1 ± 0.1) × 10?13 cm3 s?1, respectively. An upper limit for the branching ratio to produce O2(1Σg+) by the H + HO2 reaction was calculated to be 2.1%. The contributions from other reactions producing singlet oxygen were investigated.  相似文献   

5.
By the DFT/B3LYP method the equilibrium structures of oxygen complexes with water are calculated in various geometric conformations with symmetries C 2v and C s . By the MRCI/CASSCF method potential energy surface cross-sections of the 1.3[O2–H2O] complexation reaction are constructed. With taking into account the spin-orbit coupling, the forbidden transition moments a 1Δ g X 3Σ g ?, b 1Σ g +a 1Δ g , c 1Σ u ?a 1Δ g , A 3Σ u +X 3Σ g ? of the complexes are calculated and changes in their intensities at different geometric configurations of the complex are revealed.  相似文献   

6.
Two energetic catalysts, 3,5-dinitro-2-pyridonate of lead (II) (Pb(2DNPO)2, 1) and 3,5-dinitro-4-pyridone-N-hydroxylate tetrahydrate of copper (II) (Cu(4DNPOH)2(H2O)4, 2) were characterized by elemental analysis, FT-IR, TG-DSC and structurally characterized by X-ray single-crystal diffraction analysis. X-ray powder diffraction analysis of complex 1 confirmed the phase homogeneity of the polycrystalline sample. Crystal data for 1: monoclinic, space group P 21/n, a = 8.5253(9), b = 9.2938(10), c = 19.654(2) Å, β = 102.289(2)°, V = 1521.6(3) Å3, Z = 4; 2: monoclinic, space group P 21/n , a = 8.3705(10), b = 9.9307(12), c = 10.5771(12) Å, β = 98.021(2)°, V = 870.62(18) Å3, Z = 2. The complex 1 is a one-dimensional coordination polymer with each Pb(II) atom being six-coordinated, forming a heavily distorted octahedral geometry, by two nitrogen and four oxygen donors. Each ligand links the Pb(II) ions in a chelating bridging mode using nitrogen and oxygen atoms of its pyridonate part. The complex 2 is a copper (II) complex with a compressed octahedral geometry. The Cu(II) atom locates on the equatorial positions defined by oxygen atoms of four water molecules. Its axial positions are filled with two oxygen donors of the pyridine-N-hydroxylate moieties of two ligands. The abundant hydrogen bonds link the molecules into one-dimensional chains. Both the complexes represent the first two examples of the energetic catalysts containing dinitropyridine derivatives characterized crystallographically  相似文献   

7.
Non-empirical calculations of CASSCF energies, electric dipole moments, Einstein coefficients, matrix elements of the operator of spin-orbital interaction between states of different multiplicity in a model complex 6,8[Mn-O2] of C 2v symmetry have been made in 3-21G, 6-31G, 6-31G** basis sets. The crosssections of the potential energy surface (PES) of the ground and excited states were built. It is found that oxygen bonding to manganese is possible when excited atoms of manganese collide with molecular oxygen, singlet oxygen with Mn[6 S 5/2] atoms, or in a close contact O2[X3Σ g ? ] + Mn[6 S 5/2] and is determined by charge transfer states 6,8CTS(Mn+O 2 ? ). Mechanisms of singlet oxygen activation/deactivation are determined by a considerably increased probability of electric dipole transitions b 1Σ g + ?a 1Δg, a 1Δg?X3Σ g ? , b 1Σ g + ?X3Σ g ? induced in oxygen in the collision process.  相似文献   

8.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

9.
A new organic-templated vanadium sulfate with formula [C4H12N2][VIII (OH)(SO4)2] · H2O 1 has been prepared under solvothermal conditions by using a mixture of glycol and water as solvent. The structure of this compound was characterized by IR, element analysis, TG and single crystal X-ray diffraction. The title compound crystallizes in the space group monoclinic, P21/c, a = 9.290(4) Å, b = 18.264(7) Å, c = 7.132(3) Å, β = 98.149(8)°,V = 1197.88 Å3, Z = 4. Structural analysis indicates that the title compound 1 possesses a 1D chain structure formed by VO6 octahedra and SO4 tetrahedra.  相似文献   

10.
A new V6O13-based material has been synthesized via the sol–gel route. This sol–gel mixed oxide has been obtained from an appropriate heat treatment of the chromium-exchanged V2O5 xerogel performed under reducing atmosphere. This new compound, with the chemical formula Cr0.36V6O13.50, exhibits a monoclinic structure (C2/m) with the following unit cell parameters, a=11.89 Å, b=3.68 Å, c=10.14 Å, β=101.18°. The electrochemical characterization of this compound has been performed using galvanostatic discharge–charge experiments in the potential range 4–1.5 V and completed by ac impedance spectroscopy measurements. It exhibits a specific capacity of about 370 mAh g?1, which makes the compound Cr0.36V6O13.50 the best one in the V6O13-based system: 85% of the initial capacity (315 mAh g?1) after the 35th cycle is still available at C/25 without any polarization. From impedance spectroscopy, a high kinetics of Li transport (D Li=1.8×10?9 cm2 s?1) is found at mid-discharge.  相似文献   

11.
In this paper, the LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining process. The use of a spray-drying process to form particles, followed by a calcination treatment at the optimized temperature of 750 °C to produce spherical LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific surface area of 60.1 m2 g?1, a tap density of 1.15 g mL?1, and a specific capacity of 132.9 mAh g?1 at 0.1 C. The carbon nanofragment (CNF) additives, introduced into the spheres during the co-precipitation spray-drying period, greatly enhance the rate performance and cycling stability of LiNi0.5Mn1.5O4. The sample with 1.0 wt.% CNF calcined at 750 °C exhibits a maximum capacity of 131.7 mAh g?1 at 0.5 C and a capacity retention of 98.9% after 100 cycles. In addition, compared to the LiNi0.5Mn1.5O4 material without CNF, the LiNi0.5Mn1.5O4 with CNF demonstrates a high-rate capacity retention that increases from 69.1% to 95.2% after 100 cycles at 10 C, indicating an excellent rate capability. The usage of CNF and the synthetic method provide a promising choice for the synthesis of a stabilized LiNi0.5Mn1.5O4 cathode material.
Graphical Abstract Micro/nanostructured LiNi0.5Mn0.5O4 cathode materials with enhanced electrochemical performances for high voltage lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining routine and using carbon nanofragments (CNFs) as additive.
  相似文献   

12.
Photoionization of N2 and CO by 736–744 Å doublet lines from a Ne I resonance discharge gives photoelectron spectra which show that all vibrational levels of N2+, X2Σg+, and CO+, X2Σ+, situated below the ν′ = 0 level of the first excited ionic state, are populated. An autoionizing mechanism is proposed to interpret this result, as in the case of O2 and NO.  相似文献   

13.
The oxygen-deficient Sr0.75Y0.25Co0.9Ru0.1O3?δ (SYCR) cathode is systematically evaluated for the application of solid oxide fuel cells. X-ray diffraction analysis indicates that SYCR presents a tetragonal structure with space group of I4/mmm (139). In the measured high oxygen partial pressure (pO2) region (0.01–0.21 atm), the conductivity increases with increasing pO2 because of the oxygen vacancy annihilation and hole creation, relating to a general p-type semiconducting mechanism. To get an insight into the rate-limiting step of SYCR cathode, behaviors of individual polarization resistance (R 1 and R 2) are investigated in different pO2. The obtained fitting results reveal that R 1 is nearly independent on the pO2, while R 2 presents a (pO2)?0.5 dependence. At 800 °C, SYCR cathode exhibits an R p value of 0.14 Ω cm2, moreover, when using the wet hydrogen (~ 3% H2O) as fuel and ambient air as oxidant, the maximum power density of single cell Ni-YSZ (yttria-stabilized zirconia)|YSZ|SYCR reaches 452.9 W cm?2.  相似文献   

14.
LiMn2O4 is one of the most promising cathode materials due to its high abundance and low cost. However, the practical application of LiMn2O4 is greatly limited owing to its low volumetric energy density. Therefore, increasing its energy density is an urgent problem to be resolved. Herein, using the simple and mass production preferred solid-state reaction, surficial Nb-doped LiMn2O4 composed of the truncated octahedral or spherical-like primary particles are successfully synthesized. Auger electron spectroscopy (AES) and X-ray diffraction (XRD) characterizations confirm that most of Nb5+ enrich in the surficial layer of the particles to form a LiMn2-xNbxO4 phase. This kind of doping can increase the specific discharge capacity of LiMn2O4 materials. Contrast with the pristine LiMn2O4, the discharge capacity of LiMn1.99Nb0.01O4-based 18650R-type battery increases from 1497 to 1705 mAh with the volumetric energy density increasing by ~?13.9%, benefiting from the joint increments of the specific discharge capacity from 119.5 to 123.7 mAh g?1 and the compacted density from 2.81 to 3.10 g cm?3. Furthermore, the capacity retention after 500 cycles at 1 C (1500 mA) is also improved by 17.1%.
Graphical abstract ?
  相似文献   

15.
Within the adiabatic channel treatment of ionmolecule capture we have calculated the low temperature capture rate constants of N2(1Σ g + ) and O2(3Σ g ? )in collisions with positive and negative ions. In both cases, the charge-quadrupole and the anisotropic charge-induced dipole interactions produce noticeable deviations from the Langevin rate constant. The rate constants calculated with account for the anisotropic interaction, in addition, are substantially affected by nuclear symmetry; in the case of O2(3Σ g ? ), the fine-structure spin-spin interaction strongly manifests itself in the rate constants.  相似文献   

16.
The effect of hydrogen on the concentration of singlet oxygen in the a1Δg and b1Σ states, generated from a microwave discharge in O2 and in an O2/Ar mixture, was studied in flow reactors. The addition of hydrogen, in a range of 0.01–1 of concentration of the O2, increased the yields of singlet oxygen by factor of 5–20. In addition to the higher O2 (a and b) concentrations, the addition of hydrogen removed the usual NO2 fluorescence, making observation of the O2(b → X) transition at 762 nm much easier in the flow reactor. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 12–17, 2006  相似文献   

17.
Rechargeable Li–O2 batteries are attracting more and more interest due to their high energy density. Meanwhile, the replacement of high-cost and scarce precious-metal catalysts has attracted more and more attention. Currently, many academic researchers have paid attention to find highly efficient metal-free catalysts as air cathode material. Herein, the boron-doped carbon microspheres (B-CMs) were prepared through a novel and facile static calcination method and showed high electrocatalytic activity as a cathode material. The battery with a B-CM cathode delivered a high initial discharge capacity of 13,757.2 mAh g?1 and outstanding coulombic efficiency of 90.1 % at 100 mA g?1. In addition, stable cyclability (151 cycles with stable discharge voltage of ~2.60 V with a cutoff capacity of 1000 mAh g?1 at 200 mA g?1) has been exhibited. These performances are due to three main points: boron carbide compound changed the surface area of the CMs and formed the mesopore architectures as well as the large surface area of 683.738 m2 g?1; the reduce of boron atom can slow down the oxidation of the CMs during the cyclings; and finally, the electron-deficient boron atom introduction greatly facilitated Li+ diffusion and electrolyte immersion and enhanced the oxygen reduction and evolution reaction kinetics.  相似文献   

18.
A new Anderson-based heteropolymolybdate {[Eu(H2O)6]2(TeMo6O24)}·6H2O (1) has been hydrothermally synthesized and characterized by elemental analyses, IR, thermal stability analysis, XRD and single crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system, space group P-1, a = 9.4023(6) Å, b = 10.2530(7) Å, c = 10.6525(10) Å, α = 101.583(7)º, β = 108.024(7)º, γ = 107.150(6)º, V = 883.60(12) Å3, Z = 1, R1 = 0.0338, wR2 = 0.0849. Compound 1 exhibits 1D chain-like structure formed by the alternative connection between Anderson type polyoxoanions [TeMo6O24]6? and Eu3+ along a-axis. Compound 1 displays good fluorescent emission of the Eu3+ ion at room temperature.  相似文献   

19.
A new arsenic vanadium compound (NH4)2[N(CH3)4]4[β-As8V14O42(SO4)] 1 has been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction, IR spectrum, elemental analysis and thermogravimetic (TG) analysis. Compound 1 crystallizes in monoclinic system with space group P2(1)/c, a = 11.4631(5) Å, b = 11.3539(5) Å, c = 24.6265(10) Å, β = 93.6620(10)°, V = 3198.6(2) Å3, Z = 2, R1 = 0.0421 and wR2 = 0.1044. The molecule structural analysis reveals that compound 1 has a β-[As8V14O42(SO4)]6? arsenic–vanadium cluster anion.  相似文献   

20.
Organic compounds become promising candidates for cathodes of rechargeable lithium battery (RLB) due to the high theoretical capacity and improved safety. However, they exhibit low conductivity and easy dissolution in electrolyte, which leads to the low utilization of active materials and poor cycling stability of RLBs. Here, we synthesize a novel composite of activated hierarchical porous carbon supporting poly(1,5-diamino-anthraquinone) (aHPC@PDAA), using Ce(SO4)2 as oxidant and naphthalenesulfonic acid (NSA) as soft template for PDAA. The as-synthesized composite exhibits uniformly nanoporous structure with nano-sized PDAA particles distributed homogenously inside and outside of pores. The aHPC@PDAA cathode for RLBs achieves high electrochemical performance with a discharge capacity as much as 250 mAh g?1 at the current density of 100 mA g?1, which still maintains 176 mAh g?1 after 2000 charging-discharging cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号