首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By utilizing a fully floating double electrical probe system, the conductivity of a linear atmospheric pressure plasma jet, utilizing nitrogen as process gas, was measured. The floating probe makes it possible to measure currents in the nanoamp range, in an environment where capacitive coupling of the probes to the powered electrodes is on the order of several kilovolts. Using a chemical kinetic model, the production of reactive nitrogen oxide and hydrogen-containing species through admixture of ambient humid air is determined and compared to the measured gas conductivity. The chemical kinetic model predicts an enhanced diffusion coefficient for admixture of O2 and H2O from ambient air of 2.7 cm2 s?1, compared to a literature value of 0.21 cm2 s?1, which is attributed to rapid mixing between the plasma jets and the surrounding air. The dominant charge carriers contributing to the conductivity, aside from electrons, are NO+, NO2 ? and NO3 ?. Upon admixture of O2 and H2O, the dominant neutral products formed in the N2 plasma jet are O, NO and N2O, while O2(1Δg) singlet oxygen is the only dominant excited species.  相似文献   

2.
This paper reports the results of the chemical composition modeling for an atmospheric pressure DC air discharge with water cathode. The modeling was based on the combined solution of Boltzmann equation for electrons, equations of vibrational kinetics for ground states of N2, O2, H2O and NO molecules, equations of chemical kinetics and plasma conductivity equation. Calculations were carried out using experimental values of E/N and gas temperatures for the discharge currents range of 20–50 mA. The effect of H2O concentration on the plasma composition was studied. The main particles of plasma were shown to be O2(a1Δ, b1Σ), O(3P), NO, NO2, HNO3, H2O2 and OH. Effective vibrational temperatures of molecules were higher than gas temperature and they did not depend on the discharge current. Distribution functions on vibrational levels for N2, O2, H2O and NO ground states were non-equilibrium ones.  相似文献   

3.
This paper reports the results of the experimental study of parameters for a DC oxygen discharge with water cathode in the pressure range of 0.1–1 bar and the discharge current of 40 mA. The radius of positive column, the cathode voltage drop, the cathode current density and the electric field strength were measured. Rotational temperatures of N2 (C3Πu, V = 0) and OH (A2Σ, V = 0) and absolute line intensities of atomic oxygen with wave length of 845 and 777 nm were determined as well. Plasma composition modeling was carried out by the combined solution of the Boltzmann equation for electrons, the equations of vibrational kinetics for ground states of N2, O2, H2O molecules, and the equations of chemical kinetics, and the plasma conductivity equation. Calculations were carried out taking into consideration the discharge radial heterogeneity and using experimental values of E/N and gas temperatures. The main particles being formed in plasma were shown to be ·OH, H2O2, O(3P), O2(a1Δg), O2(b1Σ g + ), H(1S). On the basis of this calculation and experimental values of line intensities, the populating mechanism of (3p 3P) level of atomic oxygen was discussed. The comparison of some properties of discharges in O2, N2 and air was done.  相似文献   

4.
The influence of the addition of O2 on the OH production in a He + 0.1 % H2O discharge is investigated using laser induced fluorescence. The plasma properties $(T_{\rm g},\;n_{\rm e})$ are reported and used to explain the observed time and spatially resolved OH density, which is absolutely calibrated using Rayleigh scattering. Compared to the case when only H2O is added, an increase in the measured OH density is observed in the far afterglow. A zero-dimensional chemical kinetic model is constructed, which allows to determine the reactions responsible for the OH production in the far afterglow. When O2 is admixed, the key reaction $\hbox{O} + \hbox{OH} \longrightarrow \hbox{O}_{2} + \hbox{H}$ causes quenching of OH and production of increased densities of H, HO2 and H2O2, which subsequently leads to additional OH production in the late afterglow.  相似文献   

5.
In this paper, we report the effects of the pulse polarity on the plasma jet’s discharge characteristics, particularly, on the production of the reactive oxygen and nitrogen species (RONS) and the inactivation efficiency of myeloma cells, for the purpose of identifying and elucidating the correlation between the dose of RONS and cell viability. Experimental results reveal that the positive plasma jet has a longer length than that for negative plasma jet with the equivalent pulse power. The positive pulse plasma jet would produce higher production of the excited reactive species (OH(A), N2(C), N2+(B), He(3s3S), O(3p5P)), the positive ions (N+, O+, N2+, O2+), and the aqueous species O2?, OH, and ONOO?, while negative plasma jet would generate higher concentration of the negative ions (OH?, O2?, NO2?, NO2?) and the aqueous species NO2? and NO3?. Additionally, the myeloma cells treated by positive plasma jet results in more cell apoptosis and more CD95 expression compared to negative plasma jet, indicating the impact for the cell apoptosis is more significant in the cellular response to the positive plasma jet. By comparing and analyzing the different doses of RONS to the responses of myeloma cells under positive and negative pulse plasma jet, our findings suggest the cell viability has a positive correlation with the concentration of the concentration of ONOO? and the concentration ratio of H2O2 to NO2?, implying the high concentrations for ONOO? and H2O2 might be responsible for the inactivation of myeloma cancer cells.  相似文献   

6.
There are many problems with flue gas desulfurization by traditional gas ionization discharge, including the large size of the plasma source, high energy consumption, and the need for a traditional desulfurization method. This paper introduces oxidization of SO2 to sulfuric acid (H2SO4) in a duct by reactive oxygen species (O2 +, O3) produced by strong ionization dielectric barrier discharge. The entire plasma reaction process is completed within the duct without the use of absorbents, catalysts, or large plasma source. The reactive oxygen species O2 + reacts with gaseous H2O in the flue gas to generate ·OH radicals, which can oxidize trace amounts of SO2 in large volumes of the flue gas to produce H2SO4. Sulfuric acid is also produced by O3 oxidation of SO2 to SO3, and SO3 reacting with gaseous H2O in the flue gas. Experimental results showed that with a gas temperature of 22 °C and reactive oxygen species injection rate of 0.84 mg/L, the SO2 removal rate was 81.4 %, and the SO4 2? concentration in the recovered liquid H2SO4 reached 53.8 g/L.  相似文献   

7.

Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2 ̄, NO3 ̄, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2 ̄ and nitrates NO3 ̄ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.

  相似文献   

8.
Ding Liu 《Acta Physico》2008,24(9):1584-1588
Photodegradation of a textile dye X3B and photoreduction of dichromate (Cr(VI)) in an acidic aqueous solution were studied under 320 nm cut-off UV light irradiation in the presence of two polyoxometalates (POM), H3PW12O40 (PW), and H4SiW12O40 (SiW). The reactions in POM-X3B-Cr(VI) system were faster than those in POM-X3B, POM-Cr(VI), and X3B-Cr(VI) systems. For all reactions, PW was more photoactive than SiW. The reaction rates were proportional to the initial concentration of each component. The effects of N2, O2, and air were small but regular, indicating Cr(VI) photoreduction by a reduced POM. Quenching experiments with H2O2 and ethanol revealed that X3B photodegradation mainly occurred through hydroxyl radical (OH). It was proposed that the production of OH and a reduced POM by the reaction between H2O and excited POM* was the rate determining step, with which all evidence could be well interpreted. Different effects of POM concentration in a two- or three-component system on the reaction rates suggested that the reaction between H2O and excited POM* was reversible.  相似文献   

9.
The title compound is a methanol‐solvated salt, C16H38N42+·C4H4O52−·2CH3OH, in which the ionic components are linked into chains by two pairs of N—H⃛O hydrogen bonds [H⃛O = 1.78–2.21 Å, N⃛O = 2.702 (14)–3.094 (8) Å and N—H⃛O = 160–179°]. The methanol mol­ecules are pendent from the chain and are linked to it by O—H⃛O hydrogen bonds [H⃛O = 1.86 and 1.89 Å, O⃛O = 2.691 (9) and 2.708 (16) Å, and O—H⃛O = 168 and 165°].  相似文献   

10.
The chemical interaction between non-thermal plasma species and aqueous solutions is considered in the case of discharges in humid air burning over aqueous solutions with emphasis on the oxidizing and acidic effects resulting from formed peroxynitrite ONOO? and derived species, such as transient nitrite and stable HNO3. The oxidizing properties are mainly attributed to the systems ONOO?/ONOOH [E°(ONOOH/NO2) = 2.05 V/SHE], ·OH/H2O [E°(·OH/H2O) = 2.38 V/SHE] and to the matching dimer system H2O2/H2O [E°(H2O2/H2O) = 1.68 V/SHE]. ONOOH tentatively splits into reactive species, e.g., nitronium NO+ and nitrosonium NO 2 + cations. NO+ which also results from both ionization of ·NO and the presence of HNO2 in acidic medium, is involved in the amine diazotation/nitrosation degradation processes. NO 2 + requires a sensibly higher energy than NO+ to form and is considered with the nitration and the degradation of aromatic molecules. Such chemical properties are especially important for organic waste degradation and bacterial inactivation. The kinetic aspect is also considered as an immediate consequence of exposing an aqueous container to the discharge. The relevant chemical effects in the liquid result from direct and delayed exposure conditions. The so called delayed conditions involve both post-discharge (after switching off the discharge) and plasma activated water. An electrochemical model is proposed with special interest devoted to the chemical mechanism of bacterial inactivation under direct or delayed plasma conditions.  相似文献   

11.
Plasma–liquid interaction has already been a hotspot in the research field of plasma medicine. Aqueous reactive oxygen species (ROS) generated in this process are widely accepted playing a crucial role in plasma biomedical effects. In this paper, chemistry pathways among various aqueous ROS induced by He + O2 plasmas are investigated by a numerical model. Simulation results show that these aqueous ROS can be classified into two groups according to their production ways: the group of species including O, 1O2 and e directly produced in plasma, and the other group of species including O2 ?, H2O2, O3, etc. produced by liquid reactions. A key reaction chain of e → O2 ? → HO2(→ HO2 ?) → H2O2 is found to be important in the plasma-induced liquid chemistry. Furthermore, impacts of changes in plasma and solution conditions on aqueous ROS concentrations are studied as well. It is found that changes in plasma conditions (O2 ratio in the discharge gas/power density) can globally influence the concentrations of almost every aqueous ROS, while conditions changes of the treated liquid (pH/dissolved oxygen) only partially influence the concentrations of some specific species including O2 ?/HO2, O3 ?/HO3 and H2O2. The revelations of the liquid chemistry pathways and the dependence of ROS dosage on the treatment conditions offer a better understanding on the plasma–liquid interactions, as well as provide optimized dosage control approaches for biomedical applications.  相似文献   

12.
A new Anderson polyoxometalate (H3O)[(3-C5H7N2)2(Cr(OH)6Mo6O18)]?·?3H2O (3-C5H6N2?=?3-aminopyridine) was hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Crystal data: triclinic, P 1, a?=?7.8482(8)?Å, b?=?10.1800(10)?Å, c?=?10.4103(10)?Å, α?=?88.031(3)°, β?=?78.308(2)°, γ?=?88.842(3)°, V?=?813.91?Å3, Z?=?1, R(F)?=?0.0397, wR ref(F 2)?=?0.1022, and S?=?1.076. The X-ray crystallographic study showed that the structure contains Anderson-type [Cr(OH)6Mo6O18]3? polyoxoanions. The title compound has high catalytic activity for the oxidation of acetone tested in a continuous-flow fixed-bed micro-reactor. When the initial concentration is 18.3?g?m?3 in air and the flow velocity is 8.5?mL?min?1, the acetone is completely eliminated at 160°C.  相似文献   

13.
The emission of greenhouse gases, such as N2O and fluorinated gases, has been increasingly regulated in the semiconductor industry. Pressure effects on the abatement of N2O and CF4 were investigated in a low-pressure plasma reactor by using Fourier transform infrared (FTIR) spectroscopy. The destruction and removal efficiency (DRE) of N2O and CF4 was significantly lowered below 0.2 Torr. When the pressure was increased, the DRE of CF4 with H2O as the reactant gas increased continuously, but that with O2 or without any reactant gas first increased and then decreased. A larger electrode length yielded a higher DRE of N2O and CF4, especially at lower pressures. To understand this phenomenon, the electrical waveforms for the discharge in N2O were analyzed in conjunction with its optical emission profiles, and the rotational temperatures for different electrode lengths were compared using the N2 + ion band (λ = 391.4 nm). They provided insights into the mechanism involved in terms of plasma property and gas residence time.  相似文献   

14.
The mechanism of formation of the electronically excited radical OH*(A2Σ+) has been studied by analyzing calculations quantitatively describing the results of shock wave experiments carried out in order to determine the moment of maximum OH* radiation at temperatures T < 1500 K and pressures P ≤ 2 atm in the H2 + O2 mixtures diluted by argon when the vibrational nonequilibrium is a factor determining the mechanism and rate of the overall process. In kinetic calculations, the vibrational nonequilibrium of the initial H2 and O2 components, the HO2, OH(X2Π), O2*(1Δ) intermediates, and the reaction product H2O were taken into account. The analysis showed that under these conditions the main contribution to the overall process of OH* formation is caused by the reactions OH + Ar → OH* + Ar, H2 + HO2 → OH* + H2O, H2 + O*(1D) → OH* + H, HO2 + O → OH* + O2 and H + H2O → OH* + H2, which occur in the vibrational nonequilibrium mode (their activation barrier is overcome due to the vibrational excitation of reactants), and by H + O3 → OH* + O2 and H + H2O2 → OH* + H2O, which are reverse to the reactions of chemical quenching.  相似文献   

15.
Two novel borates [(CH3)3NH][B5O6(OH)4] (I) and Na2[H2TMED][B7O9(OH)5]2 (II) have been synthesized under solvothermal conditions, and characterized by elemental analyses, FT-IR spectroscopy, and single crystal X-ray diffraction. Crystal data for I: monoclinic, P21/c, a = 9.3693(11) Å, b = 14.0375(17) Å, c = 10.0495(9) Å, β = 91.815(9)°, Z = 4. Crystal data for II: monoclinic, P21/c, a = 11.6329(2) Å, b = 11.9246(3) Å, c = 10.2528(2) Å, β = 100.178(2)°, Z = 4. Their crystal structures both have 3D supramolecular framework with large channels constructed by O–H···O hydrogen-bonding among the polyanions of [B5O6(OH)4]? or [B7O9(OH)5]2? clusters. The templating organic amines cations in I and II are both located in the channels of 3D supramolecular frameworks, respectively, and interact with the polyborate frameworks both electrostatically and via hydrogen bonds of N–H···O. Na2[H2TMED][B7O9(OH)5]2 is the first example of heptaborate co-templated by alkali metal and organic base, which is also rare in borates. The photoluminescence property of the synthetic sample of Na2[H2TMED][B7O9(OH)5]2 in the solid state at room temperature was also investigated by fluorescence spectrophotometer.  相似文献   

16.
Three coordination polymers, {[Co(C10H5N3O5)(H2O)2]·H2O}n (1), {[Mn3(C10H5N3O5)2Cl2(H2O)6]·2H2O}n (2), and {[Cu3(C10H4N3O5)2(H2O)3]·4H2O}n (3), based on a T-shaped tripodal ligand 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine 1-oxide (H3DCImPyO), were synthesized under hydrothermal conditions. The polymers showed diverse coordination modes, being characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray structure analysis. In 1, the HDCImPyO2? generated a 1-D chain by adopting a μ2-kN, O : kN′, O′ coordination mode to bridge two Co(II) ions in two bis-N,O-chelating modes. In 2, the HDCImPyO2? adopted a μ3-kN, O : kO′, O′′ : O′′′ coordination mode to bridge two crystallographically independent Mn(II) ions, forming a 2-D hcb network with {63} topology. In 3, by adopting μ4-kN, O : kO′, O′′ : kN′′, O′′′ : O′′′′ coordination, DCImPyO3? bridged three crystallographically independent Cu(II) ions to form a 3-D framework having the stb topology.  相似文献   

17.
In this paper, we have illustrated the utilisation of a second-sphere coordination approach to construct supramolecular inclusion solids with varieties of guest molecules. A flexible molecule N,N,N′,N′-tetra-p-methylbenzyl-ethylenediamine (L1) bearing doubly protonated H-bond donors was designed, capable of forming N–H…Cl hydrogen bonds with a crystallographically unique chloride anion, to construct an anion-directed ligand. The pillared double-layered host framework was constructed by an anion-directed ligand and primary coordination sphere [CoCl4]2 ?  through weak C–H…Cl hydrogen-bonding interactions. A variety of guest molecules, such as p-anisaldehyde, 1,4-dimethoxy-2,5-bis(methoxymethyl)benzene, can be included, leading to the formation of novel supramolecular inclusion solids: [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C8H8O2]·0.25[CH3OH] (1) and [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C12H20O4]·0.5[CH3OH] (2).

We have presented herein the utilisation of a second-sphere coordination approach to construct supramolecular inclusion solids with a variety of guest molecules. A novel type of a pillared double-layered host framework was constructed by a second-sphere coordination between the anion-directed ligand (L1 = N,N,N′,N′-tetra-p-methylbenzyl-ethylenediamine) and [CoCl4]2 ?  through weak C–H…Cl hydrogen-bonding interaction, and a variety of guest molecules, such as p-anisaldehyde, 1,4-dimethoxy-2,5-bis(methoxymethyl)benzene, can be included, leading to the formation of supramolecular inclusion solids: [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C8H8O2]·0.25[CH3OH] (1) and [L1]·4[H]+·[CoCl4]2 ? ·2Cl·1.5[C12H20O4]·0.5[CH3OH] (2)

  相似文献   

18.
A new reduced ferrous molybdophosphate composite solid of the formula, [(C10H14N2)H]4[FeII 10MoV 24(H2PO4)4(HPO4)12(PO4)4(H2O)16(OH)16O44]·12H2O, has been synthesized from a reaction mixture of MoO3, FeSO4·7H2O, C2H2O4·2H2O, nicotine, H3PO4, and H2O under hydrothermal conditions. The crystal data: monoclinic, space group C2/m, a = 24.4349(124), b = 12.9935(66), c = 14.7281(74) Å, β = 104.87(1) Å, V = 4520(4) Å3, Z = 2, R 1  = 0.0874, wR 2  = 0.2179. The structure is built from the building blocks of the formula, {FeII[Mo6P4O31]2}, consisting of a network of MO6 (M = Fe, Mo) octahedral and PO4 tetrahedral linked through their vertices. The connectivity of the building blocks with two pairs of face-sharing dinuclear Fe(II) clusters of the formula of [FeII 2(H2O)4O5] on which a phosphate group is hanging gives rise to one-dimensional chains with eight-membered apertures. The remarkable hydrogen bonded interactions between the chains form a unique and interesting framework with three-dimensional intersecting tunnels where the protonated nicotine molecules as structuring templates and crystallization water molecules are situated.  相似文献   

19.
Quinazoline hexamolybdochromate [C9H16N2]H3[CrMo6O18(OH)6] · 2H2O has been synthesized and studied by mass spectroscopy, X-ray powder diffraction, thermogravimetry, and IR and NMR spectroscopy. The compound crystallizes in triclinic system with the unit cell parameters a = 15.06 Å, b = 13.08 Å, c = 8.17 Å, α = 59.85°, β = 123.15°, γ = 107.01°, V = 1165.62 Å3, ρpycn = 3.58 g/cm3, and Z = 2.  相似文献   

20.
The structure of aqueous lithium tetraborate solutions was investigated by species distribution calculation and synchrotron X-ray scattering. It shows that the dominant species in supersaturated solution at 298.15 K is B4O5(OH) 4 2? and the minor species are B3O3(OH) 5 2? , B3O3(OH) 4 ? and B(OH)3. The ‘intramolecular’ structural parameters of B4O5(OH) 4 2? , such as bond length and coordination number, were gives out using density function theory calculation. X-ray scattering study shows that the distance Li–O(H2O)I of [Li(H2O)4]+ is about 0.1983 nm with the coordination number(CN) 4 in tetrahedral configuration. The B–O(H2O) distance in hydrated anion B4O5(OH)4(OH2) 8 2? is 0.3662 nm with the CN 12. The Li+–B distance is about 0.3364 nm with a coordination number ~1.0. The temperature effect on solution structure was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号