首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atmospheric plasma treatment is an effective and economical surface treatment technique. The main advantage of this technique is that the bulk properties of the material remain unchanged while the surface properties and biocompatibility are enhanced. Polymers are used in many biomedical applications; such as implants, because of their variable bulk properties. On the other hand, their surface properties are inadequate which demands certain surface treatments including atmospheric pressure plasma treatment. In biomedical applications, surface treatment is important to promote good cell adhesion, proliferation, and growth. This article aim is to give an overview of different atmospheric pressure plasma treatments of polymer surface, and their influence on cell-material interaction with different cell lines.  相似文献   

2.
Plasma Chemistry and Plasma Processing - Cold atmospheric pressure plasmas (CAPPs) increasingly attracted scientific attention in the field of medicine, especially oncology. Because of the surface...  相似文献   

3.
Cold Atmospheric Pressure Plasma Can Induce Adaptive Response in Pea Seeds   总被引:1,自引:0,他引:1  
Plasma Chemistry and Plasma Processing - This study investigated the effect of cold atmospheric pressure air plasma pre-treatment on pea (Pisum sativum L.) seeds. The aim of our study was to verify...  相似文献   

4.
Plasma Chemistry and Plasma Processing - The possibility to improve the germination characterization of the wheat seeds by cold atmospheric nitrogen plasma jet treatment was report. Spectroscopic...  相似文献   

5.
Low temperature atmospheric pressure plasma processes can be applied to inactivate micro-organisms on products and devices made from synthetic and natural polymers. This study shows that even a short-time exposure to Ar or Ar/O2 plasma of an atmospheric pressure plasma jet leads to an inactivation of Bacillus atrophaeus spores with a maximum reduction of 4 orders of magnitude. However, changes in the surface properties of the plasma exposed material have to be considered, too. Therefore, polyethylene and polystyrene are used as exemplary substrate materials to investigate the effect of plasma treatment in more detail. The influence of process parameters, such as type of operating gas or jet-nozzle to substrate distance, is examined. The results show that short-time plasma treatment with Ar and Ar/O2 affects the surface wettability due to the introduction of polar groups as proofed by X-ray photoelectron spectroscopy. Furthermore, atomic force microscopy images reveal changes in the surface topography. Thus, nanostructures of different heights are observed on the polymeric surface depending on the treatment time and type of process gas.  相似文献   

6.
Atmospheric Plasma Sterilization and Deodorization of Dielectric Surfaces   总被引:4,自引:0,他引:4  
A method is presented for rapid and uniform sterilization and deodorization of dielectric surfaces. The technology is applicable to the inside surface of PET or glass bottles, polymer caps, plastic tubes, etc. The treatment is based on a pulsed RF discharge in air at atmospheric pressure (eventually with addition of argon) creating a nonequilibrium plasma on the treated surface. The plasma effectively destroys microorganisms in vegetative or sporulent form. It also slightly etches the polymeric material, removing some atomic layers and, thereby, cleaning it from aromatic organic components (deodorization). The process is short: PET bottles 1.5 L, in particular, can be treated in about 20 msec. The results of surface analysis and microbiological, chromatography, and spectroscopy tests are discussed. A device has been developed and integrated into an industrial-filling machine for online sterilization and deodorization of the inside surface of PET bottles before filling, and for sterilization of caps and bottle necks before seaming. It allows cold asceptic filling at a rate of 36,000 bottles per hour.  相似文献   

7.
Plasma Chemistry and Plasma Processing - Cold atmospheric pressure plasma treatment is currently being explored as an alternative way to improve the germination and growing parameters of plant...  相似文献   

8.

The atmospheric pressure radiofrequency (RF) plasma polymerization of furan was carried out with the objective of synthesizing polyfuran thin film. The structure, compositions and morphology of the plasma deposited polyfuran film were investigated by Fourier transform infrared (FTIR), atomic force microscopy (AFM), ultraviolet‐visible absorption spectroscopy (UV‐vis) and thermogravimetric analysis (TGA). The formation of polyfuran was confirmed using FTIR and UV‐visible analysis. The properties of plasma‐deposited polyfuran were compared with those of chemically synthesized polyfuran. Although the plasma deposited thin film polyfuran shows lower thermal stability than that of chemically synthesized polyfuran. It has better solubility in CHCl3, also. Thin uniform polyfuran films are obtained in plasma assisted polyfuran deposition, while particles are obtained in chemical polyfuran polymerization.  相似文献   

9.
The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts,such as MoO3/Al2O3,NiY,Pd/Al2O3,which were used in the conversion of natural gas to C2 hydrocabons through electrical field enhanced plasma catalysis.These parameters were compared in different input voltage,different atmosphere,before and after reaction in plasma field.The interaction between catalysts and cold plasma was also investigated.This confirm that cold plasma can enhanced catalysis effect.  相似文献   

10.
Cold atmospheric pressure plasma (CAPP) is widely used in medicine for the treatment of diseases and disinfection of bio-tissues due to its antibacterial, antiviral, and antifungal properties. In agriculture, CAPP accelerates the imbibition and germination of seeds and significantly increases plant productivity. Plasma is also used to fix molecular nitrogen. CAPP can produce reactive oxygen and nitrogen species (RONS). Plasma treatment of bio-tissue can lead to numerous side effects such as lipid peroxidation, genotoxic problems, and DNA damage. The mechanisms of occurring side effects when treating various organisms with cold plasma are unknown since RONS, UV-Vis light, and multicomponent biological tissues are simultaneously involved in a heterogeneous environment. Here, we found that CAPP can induce in vitro oxidation of the most common water-soluble redox compounds in living cells such as NADH, NADPH, and vitamin C at interfaces between air, CAPP, and water. CAPP is not capable of reducing NAD+ and 1,4-benzoquinone, despite the presence of free electrons in CAPP. Prolonged plasma treatment of aqueous solutions of vitamin C, 1,4-hydroquinone, and 1,4-benzoquinone respectively, leads to their decomposition. Studies of the mechanisms in plasma-induced processes can help to prevent side effects in medicine, agriculture, and food disinfection.  相似文献   

11.
Tailoring of polymers for multifaceted applications is an increasing field, whereby most often the surface properties must be adjusted. Therefore, the coating of common polymers by plasma polymerization is a promising way to modify the surface and meet the demands. Beside the tuning of the required surface properties, good adhesion and stability of the films is essential. This work investigates the plasma deposition of pp-HMDSO films on PC and PC/ABS to generate stable, hydrophobic surfaces. By examining the plasma conditions—deposition rate, energy range, and surface topography—ultrathin, stable films with advancing contact angles up to 110° and receding angles exceeding 90° can be designed. Storage of the siloxane films for 1 year in air at ambient conditions exhibits almost no aging. Thus, these films are superior to fluorocarbon films deposited for comparison.  相似文献   

12.
Cold atmospheric pressure ambient air plasma generated by Diffuse Coplanar Surface Barrier Discharge (DCSBD) was investigated for inhibition of native microbiota and potentially dangerous pathogens (Aspergillus flavus, Alternaria alternata and Fusarium culmorum) on the maize surface. Moreover, the improvement of germination and growth parameters of maize seeds was evaluated. Maize (Zea mays L.; cv. Ronaldinio), one of the most important cultivated crops worldwide, was selected as the research material. Electrical measurements confirmed the high volume power density (80 W cm?3) of DCSBD plasma. Non-equilibrium plasma state evaluated using optical emission spectroscopy showed values of vibrational and rotational temperature (2700?±?300) K and (370?±?75) K, respectively. Changes on the plasma treated seeds surface were studied by water contact angle measurement, scanning electron microscope analysis and Fourier transform infrared spectroscopy. A complete devitalisation of native microbiota on the surface of seeds was observed after a short treatment time of 60 s (bacteria) and 180 s (filamentous fungi). The plasma treatment efficiency of artificially contaminated maize seeds was estimated as a reduction of 3.79 log (CFU/g) in F. culmorum after a 60-s plasma treatment, 4.21 log (CFU/g) in A. flavus and 3.22 log (CFU/g) in A. alternata after a 300-s plasma treatment. Moreover, the obtained results show an increase in wettability, resulting in a better water uptake and in an enhancement of growth parameters. The investigated DCSBD plasma source provides significant technical advantages and application potential for seed surface finishing without the use of hazardous chemicals.  相似文献   

13.
Effects of a cold atmospheric pressure plasma (CAPP) treatment on the germination, production of biomass, vigor of seedlings, uptake of water of wheat seeds (Triticum aestivum L. cv. Eva) were investigated. The CAPP treatment influence on the inactivation of microorganisms occurring on the surface of wheat seeds was investigated also. The so-called Diffuse Coplanar Surface Barrier Discharge generating a cold plasma in ambient air with high power volume density of some 100 W/cm3 was used for the treatment of seeds at exposure times in the range of 10–600 s. The optical emission spectroscopy and the electrical measurements were used for estimation of CAPP parameters. The obtained results indicate that the germination rate, dry weight and vigor of seedlings significantly increased for plasma treatment from 20 to 50 s. The plasma treatment of seeds led to an extensive increase in wettability and faster germination comparing with the untreated seeds. The growth inhibition effect of CAPP on the surface microflora of wheat seeds increased with the increase of the treatment time. The efficiency of the treatment of wheat seeds artificially contaminated with pure cultures of filamentous fungi decreased in the following order: Fusarium nivale > F. culmorum > Trichothecium roseum > Aspergillus flavus > A. clavatus.  相似文献   

14.
Due to the body’s systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent’s gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.  相似文献   

15.
We examined the ashing treatment at atmospheric pressure by means of three spray-type reactors fed with O2/He or O2/Ar mixture gases. These differed in the size or the shape of their nozzles. Such reactors were able to ash an organic compound (OFPR-800; a photoresist) even at atmospheric pressure. The results showed that the following procedures are important for increasing the ashing rate: to make the gas speed after blowing out fast; to decrease the O2 content while increasing the gas speed; and to use a gas mixture which has a slow decay rate of the active species, such as the oxygen radicals. Especially, when we used O2/Ar mixture gas for the ashing treatment, the ashing rate became quite fast and was as fast as that of a general low pressure glow plasma.  相似文献   

16.
Recently, much attention has been paid to gas discharges producing nonthermal plasma because of many potential benefits in industrial applications. Historically, past work focused on Dielectric Barrier (silent) Discharges (DBD) and pulse-periodical corona discharges. Recently, a number of new different discharge techniques succeeded in producing stable gas discharge at atmospheric pressure. Among these are repetitively pulsed glow discharge; continuous glow discharge in a gas flow; hollow-cathode atmospheric pressure discharge; RF and microwave (MW) discharges. Several new variants of the DBD have been demonstrated over a rather wide range of frequencies. All these forms of gas discharge are characterized by a strong nonequilibrium plasma state. We attempt to classify these discharges with respect to their properties, and an overview of possible applications is made. Conditions for the existence of homogenous and filamentary forms of each of the discharge types are discussed.  相似文献   

17.
An atmospheric pressure dielectric barrier plasma discharge has been used to study a thin film deposition process. The DBD device is enclosed in a vacuum chamber and one of the electrodes is a rotating cylinder. Thus, this device is able to simulate continuous processing in arbitrary deposition condition of pressure and atmosphere composition. A deposition process of thin organosilicon films has been studied reproducing a nitrogen atmosphere with small admixtures of hexamethyldisiloxane (HMDSO) vapours. The plasma discharge has been characterized with optical emission spectroscopy and voltage-current measurements. Thin films chemical composition and morphology have been characterized with FTIR spectroscopy, atomic force microscopy (AFM) and contact angle measurements. A strong dependency of deposit character from the HMDSO concentration has been found and then compared with the same dependency of a typical low pressure plasma enhanced chemical vapour deposition process.  相似文献   

18.
Novel types of non-thermal plasma sources at atmospheric pressure based on multi-pin DC (direct current) diffusive glow discharge and AC (alternative current) streamer barrier corona have been elaborated and tested successfully for cold surface treatment of polymer films [polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET),] and polyester fabric. Results on physical properties ofdischarges mentioned and output energy characteristics of new plasma sources as well as data on after-treatment changes in wettability of films and fabrics are presented. The main goal of this study was to find out the experimental conditions for gas discharge and surface processing to achieve a remarkable wettability change for a short treatment time.  相似文献   

19.
Carbon black dispersions are stabilized using polymeric dispersants. The stabilization is provided by adsorbed polymer layers around surfaces through interaction forces. Therefore, it is valuable to measure the interaction forces between bare and polymer-coated surfaces using atomic force microscopy to predict the behavior of dispersions. Three polymeric dispersants (Hypermer LP1, Hypermer B246, and OLOA 11000) are used in the present work to disperse the graphitic carbon black particles in an organic solvent, decaline. Hypermer B246 and OLOA 11000 produced repulsive interactions and, hence, are effective stabilizers for carbon black surfaces. Hypermer LP1 produced attractive interactions, making it an ineffective stabilizer for carbon black. Attractive interactions were also observed in blank dispersions. The experimentally determined interaction curves are compared with theoretical curves, the Derjaguin approximation. The repulsive steric interactions are also analyzed quantitatively based on the Alexander and de Gennes scaling law.  相似文献   

20.
低温等离子体改性聚合物膜的原理   总被引:4,自引:0,他引:4  
本文对等离子体的产生和性质进行了介绍,并分类按CASING(Crosslinked Actived by Species of Inert Gases)技术,反应型等离子体和聚合型等离子体对等离子体改性聚合物的自由基反应机理进行了较为详细的论述,同时还讨论了等离子体作用导致的表面物理变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号