首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
[structure: see text] Thianthrene cation radical tetrafluoroborate (Th*+ BF4(-)) added to the terminal alkynes 1-pentyne, 1-hexyne, 1-heptyne, 1-octyne, 1-nonyne, and 1-decyne to form trans-1,2-bis(5-thianthreniumyl)alkene tetrafluoroborates (1-6). Similarly, addition of phenoxathiin cation radical tetrafluoroborate (PO*+ BF4(-)) to the same alkynes gave 1,2-bis(10-phenoxathiiniumyl)alkene tetrafluoroborates (7-12). The trans configuration of two of the adducts (1 and 4) was shown with X-ray crystallography. When solutions of 1-6 in chloroform were stirred with activated alumina, cis elimination of a proton and thianthrene (Th) occurred with the formation of 1-(5-thianthreniumyl)alkyne tetrafluoroborates (1a-6a). Similar treatment of 8-12 caused elimination of a proton and phenoxathiin (PO) with formation of 1-(10-phenoxathiiniumyl)alkene tetrafluoroborates (8a-12a). Stirring of 1a-6a with alumina for short periods of time caused their conversion into 5-[(alpha-keto)alkyl]thianthrenium ylides (1b-6b) and alpha-ketols, RC(O)CH2OH (1c-6c).  相似文献   

2.
Thianthrene cation radical tetrafluoroborate (Th*+ BF4-) has been found to add to 2,3-dimethyl-2-butene (DMB) at 0 degrees C and -15 degrees C. The adduct, 2,3-dimethyl-2,3-(5,10-thianthreniumdiyl)butane ditetrafluoroborate (12), was isolated at -15 degrees C, and its 1H NMR spectrum was recorded at that temperature. The adduct was stable in CD3CN solution at -15 degrees C but decomposed slowly at 0 degrees C and quickly at 23 degrees C, forming the salt of 2,4,4,5,5-pentamethyl-2-oxazoline (8) with loss of thianthrene (Th). These results explain why earlier attempts to prepare 12 and detect its formation at room temperature with NMR spectroscopy were not successful. Reaction of Th*+ with DMB was followed with cyclic voltammetry and was found to exhibit redox catalysis in which Th was regenerated. With the faster scanning techniques of cyclic voltammetry, the formation of 12 was detectable, with a reduction potential of about -1.0 V at 25 degrees C and 3 degrees C. The observed reduction potential was in harmony with reduction potentials of a number of other, stable monoadducts. Thus, the redox catalysis involved the rapid formation of 12 and its rapid decomposition into 8 and Th, the newly formed Th being responsible for the observed enhanced oxidation currents. In contrast, 8 appears to be formed directly by oxidation of DMB by PO*+PF6-.  相似文献   

3.
Addition of phenoxathiin cation radical (PO*+) to acyclic alkenes in acetonitrile (MeCN) solution occurred stereospecifically to form bis(10-phenoxathiiniumyl)alkane adducts. Stereospecific trans addition is ascribed to the intermediacy of an episulfonium cation radical. The alkenes used were cis- and trans-2-butene, cis- and trans-2-pentene, cis- and trans-4-methyl-2-pentene, cis- and trans-4-octene, trans-3-hexene, trans-3-octene, trans-5-decene, cis-2-hexene, and cis-2-heptene. The erythro bisadducts (compounds 6) were obtained with trans-alkenes, while threo bisadducts (compounds 7) were obtained with cis-alkenes. The assigned structures of 6 and 7 were consistent with their NMR spectra and, in one case, 6c (the adduct of trans-4-methyl-2-pentene) was confirmed with X-ray crystallography. Additions of PO*+ to 1,4-hexa-, 1,5-hexa-, 1,6-hepta-, and 1,7-octadiene gave bis(10-phenoxathiiniumyl)alkenes (compounds 8), the assigned structures of which were consistent with their NMR spectra. Each of these adducts lost a proton and phenoxathiin (PO) when treated with basic alumina in MeCN solution. Compounds 6 (from trans-alkenes) gave mixtures of (Z)- (9) and (E)-(10-phenoxathiiniumyl)alkenes (10) in which the (Z)-isomers (9) were dominant. On the other hand, compounds 7 (from cis-alkenes) gave mixtures of 9 and 10 in which, with one exception (the adduct 7c of cis-4-methyl-2-pentene), compounds 10 were dominant. The path to elimination is discussed. The alkenes 9 and 10 were characterized with NMR spectroscopy and, in one case (9a), with X-ray crystallography. Reactions of 8b-d with basic alumina gave mixtures of (E)- (13) and (Z)-(10-phenoxathiiniumyl)dienes (14), in which compounds 13 were dominant. The configuration of the product from 8a (the adduct of 1,4-hexadiene) could not be settled. Noteworthy features in the coupling patterns and chemical shifts in the NMR spectra of some of the adducts and their products are discussed and related to adduct conformations.  相似文献   

4.
Phenoxathiin cation radical perchlorate (PO.+ClO4(-)) added stereospecifically to cyclopentene, cyclohexene, cycloheptene, and 1,5-cyclooctadiene to give 1,2-bis(5-phenoxathiiniumyl)cycloalkane diperchlorates (4-7) in good yield. The diaxial configuration of the PO+ groups was confirmed with X-ray crystallography. Unlike additions of thianthrene cation radical perchlorate (Th.+ClO4(-)) to these cycloalkenes, no evidence for formation of monoadducts was found in the reactions of PO.+ClO4(-). This difference is discussed. Addition of Th.+ClO4(-) to five trans alkenes (2-butene, 2-pentene, 4-methyl-2-pentene, 3-octene, 5-decene) and four cis alkenes (2-pentene, 2-hexene, 2-heptene, 5-decene) gave in each case a mixture of mono- and bisadducts in which the configuration of the alkene was retained. Thus, cis alkenes gave erythro monoadducts and threo bisadducts, whereas trans alkenes gave threo monoadducts and erythro bisadducts. In these additions to alkenes, cis alkenes gave predominantly bisadducts, while trans alkenes (except for trans-2-butene) gave predominantly monoadducts. This difference is explained. 1,2-Bis(5-phenoxathiiniumyl)cycloalkanes (4-7) and 1,2-bis(5-thianthreniumyl)cycloalkanes underwent fast elimination reactions on activated alumina forming, respectively, 1-(5-phenoxathiiniumyl)cycloalkenes (8-11) and 1-(5-thianthreniumyl)cycloalkenes (12-16). Among adducts of Th.+ClO4(-) and alkenes, monoadducts underwent fast ring opening on alumina to give (5-thianthreniumyl)alkenes, while bisadducts underwent fast eliminations of H+ and thianthrene (Th) to give (5-thianthreniumyl)alkenes also. Ring opening of monoadducts was a stereospecific reaction in which the configuration of the original alkene was retained. Thus, erythro monoadducts (from cis alkenes) gave (E)-(5-thianthreniumyl)alkenes and threo monoadducts (from trans alkenes) gave (Z)-(5-thianthreniumyl)alkenes. Among bisadducts, elimination of a proton and Th occurred and was more complex, giving both (E)- and (Z)-(5-thianthreniumyl)alkenes. These results are explained. Configurations of adducts and (5-thianthreniumyl)alkenes were deduced with the aid of X-ray crystallography and (1)H and (13)C NMR spectroscopy. In the NMR spectra of (E)- and (Z)-(5-thianthreniumyl)alkenes, the alkenyl proton of Z isomers always appeared at a lower field (0.8-1.0 ppm) than that of E isomers.  相似文献   

5.
The monoadducts (4a-d) of thianthrene cation radical perchlorate (1a) and isobutene, 2-methylbutene, 2-methyl-2-butene, and 2-methylpentene decompose spontaneously in acetonitrile (MeCN) solution, with the formation of thianthrene (Th). Decomposition of 4a (1,2-(5,10-thianthreniumdiyl)-2-methylpropane diperchlorate) and 4a', the corresponding dihexafluorophosphate, was studied in depth and extensively with (1)H and (13)C NMR spectroscopy. Decomposition of 4a was found to involve the solvent itself as well as water in the solvent, remaining from incomplete drying, and gave, apart from Th, successively, the perchlorate salts of 2,4,4-trimethyl-2-oxazoline (6) and 2-amino-2-methylpropyl acetate (7). These salts, 6-HClO(4) and 7-HClO(4), respectively, were prepared and used in understanding the reactions of 4a as well as the relationships among 6, 7, and 2-(acetylamino)-2-methyl propanol (8) in acidified MeCN solution. Decompositions of 4a-d in MeCN and other nitriles (RCN) containing an added alcohol (R'OH) led to new products, 5-[(1-alkoxyalkylidene)ammonio]alkylthianthrenium diperchlorates (5a-u). These compounds were identified with (1)H and (13)C NMR spectroscopy and, in part, with X-ray crystallography and elemental analysis. The mechanisms of formation of 5-7 are discussed.  相似文献   

6.
Thianthrene cation radical salts, Th(*)(+) X(-)(X(-) = a, ClO(4)(-); b, PF(6)(-); c, SbF(6)(-)), add to cycloalkenes (C(5)-C(8)) in acetonitrile (MeCN) to form 1,2-bis(5-thianthreniumyl)cycloalkane salts and 1,2-(5,10-thianthreniumdiyl)cycloalkane salts, most of which have now been isolated and characterized. These are called bis- (3, 6, 9, 12) and monoadducts (4, 7, 10, 13). The proportional amount of the monoadduct obtained in the initial stage of the reaction varied with the cycloalkene in the order C(6) < C(5) < C(7) < C(8). Thus, the ratio bis:mono for C(5) and C(7) was, respectively, about 80/20 and 50/50. In contrast, only about 5% of the C(6) monoadduct (7a) and none of 7b,c was obtained, while for C(8) none of the bisadducts 12a-c was found. Bisadducts 3 and 9 lost thianthrene (Th) slowly in MeCN solution and changed into monoadducts 4 and 10. A comparable change from 6a into 7a was not observed. The monoadducts, themselves, lost a proton slowly in dry MeCN and opened into 1-(5-thianthreniumyl)cycloalkenes (5, 8, 11, 14). With 3 and 9, particularly, it was possible to follow with NMR spectroscopy the succession of changes, for example, 3 to 4 to 5. The opening of a monoadduct was made faster by adding a small amount of water to the solution. The bisadducts of 4-methylcyclohexene (15a) and 1,5-cyclooctadiene (17a) were isolated and characterized. Although a small amount of monodduct (16a) of 4-methylcyclohexene was found with NMR spectroscopy, it could not be isolated. Bis- and monoadducts were obtained also in additions of Th(*)(+) ClO(4)(-) to acyclic alkenes, in relative amounts that, again, varied with the alkene. From cis-2-butene the dominant product was the bisadduct (18), while the monoaduct (19) was characterized with NMR spectroscopy but could not be isolated. In contrast, trans-3-hexene gave mainly the monoadduct (21), while the bis adduct (20) could not be isolated. With 4-methyl-cis-2-pentene, both bis- (22) and monoadduct (23) were isolated, the former being dominant. The conversion of 18 into 19 was characterized with NMR spectroscopy. In all cycloalkene bisadducts, the configurational relationship of the two thianthrenium groups was trans, while in the monoadducts, the bonds to the single thianthrene dication were (necessarily) cis. In both bis- and monoadducts of acyclic alkenes, the configuration of the alkene was retained. The mechanisms of addition with retention of configuration, of conversion of a bis- into a monoadduct, and of opening of a monoadduct are discussed. Products were identified with a combination of NMR spectroscopy, X-ray crystallography, elemental analysis, and (for cycloalkene adducts) reaction with thiophenoxide ion.  相似文献   

7.
A novel synthesis of 1,3-dimethyl-5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidin-2,4(1,3H)-dionylium tetrafluoroborate (10(+).BF(4)(-)) was accomplished by the reaction of 3,8-methano[11]annulenone with dimethylbarbituric acid and following acidic cyclization, albeit in low yield. Remarkable structural characteristics were suggested on inspection of the spectral data and MO calculation, and it was clarified that the positive charge is largely localized at the C11. The pK(R+) value of cation 10(+) was determined spectrophotometrically to be 4.6, which is much smaller by 4.1 pH unit than that of 1,3-dimethyl-7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidin-2,4(1,3H)-dionylium tetrafluoroborate (pK(R+) = 8.7). This value is also smaller by 1.6 pH unit than that of the parent 1,6-methano[11]annulenylium ion (pK(R+) = 6.2). The feature is rationalized on the basis of the perturbation derived from the bond fixation of the parent cation. The electrochemical reduction of 10(+) exhibited less negative reduction potential at -0.39 (V vs Ag/AgNO(3)) upon cyclic voltammetry (CV). In a search for reactivity, reactions of 10(+) with some nucleophiles, hydride and diethylamine, were carried out to give mixtures of C11- and C13-adducts. In both reactions, the methano-bridge controls the nucleophilic attacks to the C13 to favor exo selectivity. The photoinduced autorecycling oxidation reactions of 10(+).BF(4)(-) toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) in 719-3286% yield (recycling number of 10(+).BF(4)(-): 7.2-32.9).  相似文献   

8.
A synthesis of 14-substituted 1,3-dimethyl-5,10-methanocycloundeca[4,5]pyrrolo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates 11a,b(+).BF4- was accomplished by the methylation of 5,10-methanocycloundeca[4,5]pyrrolo[2,3-d]pyrimidine-2,4(1,3H)-dione derivatives with MeI and following anion-exchange reaction by treatment with 42% aq HBF(4). Compound 11b(+).BF4- was synthesized alternatively by the reaction of 1,6-methano[11]annulenylium tetrafluoroborate with 6-phenylamino-1,3-dimethyluracil and following oxidative cyclization reaction. Remarkable structural characteristics of 11a,b(+)were clarified on inspection of the UV-vis and NMR spectral data as well as X-ray crystal analyses. The stability of cations 11a,b(+)() is expressed by the pK(R+) values which were determined spectrophotometrically as 9.8 and 9.7, which are smaller by 1.4 and 1.2 pH units than those of the corresponding seven-membered ring cations, respectively; however, the values are larger by 3.6 and 3.5 pH units than that of the parent 1,6-methano[11]annulenylium ion (pK(R+) = 6.2). The feature is rationalized on the basis of the perturbation derived from the bond fixation of the parent cation and the electron-donating ability of pyrrolopyrimidine. The electrochemical reduction of 11a,b(+).BF4- exhibited reduction potential at -0.58 and -0.52 (V vs Ag/AgNO3) upon cyclic voltammetry (CV). Reaction of 11a(+).BF4- with hydride afforded mixures of the C13- and C11-adducts in a ratio with hydride afforded, on the other hand, the C13-adduct as a single product. In both cations, the methano-bridge seemed to control the nucleophilic attack to the C13 favorably with exo-selectivity. The photoinduced autorecycling oxidation reactions of 11a,b(+).BF4- toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 1.1 to 32.2. Furthermore, as an example of the NAD+-NADH models, the reduction of a pyruvate analogue and some carbonyl compounds with the hydride adducts of 11a,b+.BF4- was accomplished for the first time to give the corresponding alcohol derivatives.  相似文献   

9.
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.  相似文献   

10.
Quadruply bonded dimolybdenum(II) complexes with NP-R (2-(2-R)-1,8-naphthyridine; R = thiazolyl (NP-tz), furyl (NP-fu), thienyl (NP-th)) and 2,3-dimethyl-1,8-naphthyridine (NP-Me 2) have been synthesized by reactions of cis-[Mo2(OAc)2(CH3CN)6][BF4]2 with the corresponding ligands. The products cis-[Mo2(NP-tz)2(OAc)2][BF4]2 (1), trans-[Mo2(NP-fu)2(OAc)2][BF4]2 (2), trans-[Mo2(NP-th)2(OAc)2][BF4]2 (3), and trans-[Mo2(NP-Me2)2(OAc)2][BF4]2 (4) were isolated and characterized. The NP-R ligands with stronger R = pyridyl and thiazolyl donors result in cis isomers whereas the weaker furyl and thienyl appendages lead to compounds having a trans orientation of the ligands. The use of NP-Me2 leads to a trans structure with a tetrafluoroborate anion occupying one of the axial sites. Complete replacement of two acetate groups by acetonitrile in 1 and 2 resulted in the cis isomers [Mo2(NP-tz)2(CH3CN)4][OTf]4 (5) and [Mo2(NP-fu)2(CH3CN)4][OTf]4 (6) respectively. The combination of one acetate and two acetonitriles as ancillary ligands, however, yields trans-[Mo2(NP-tz)2(OAc)(CH3CN)2][BF4]3 (7) in the solid state as determined by X-ray crystallography. (1)H NMR spectra of the products are diagnostic of the cis and trans dispositions of the ligands. Solution studies reveal that the ligand arrangements observed in the solid state are mostly retained in the acetonitrile medium. The only exception is 7, for which a mixture of cis and trans isomers are detected on the NMR time scale. The isolation of trans compounds 2- 4 from the cis precursor [Mo2(OAc)2(CH3CN)6][BF4]2 indicates that an isomerization process occurs during the reactions. The mechanism involving acetate migration through axial coordination has been invoked to rationalize the product formation. Compounds 1- 7 were structurally characterized by single-crystal X-ray methods.  相似文献   

11.
The unimolecular reactions of the radical cation of dimethyl phenylarsane, C6H5As(CH3)2, 1*+ and of the methyl phenylarsenium cation, C6H5As+CH3, 2+, in the gas phase were investigated using deuterium labeling and methods of tandem mass spectrometry. Additionally, the rearrangement and fragmentation processes were analyzed by density functional theory (DFT) calculations at the level UBHLYP/6- 311+G(2d,p)//UBHLYP/5-31+G(d). The molecular ion 1*+ decomposes by loss of a .CH3 radical from the As atom without any rearrangement, in contrast to the behavior of the phenylarsane radical cation. In particular, no positional exchange of the H atoms of the CH3 group and at the phenyl ring is observed. The results of DFT calculations show that a rearrangement of 1*+ by reductive elimination of As and shift of the CH3 group is indeed obstructed by a large activation barrier. The MIKE spectrum of 2+ shows that this arsenium cation fragments by losses of H2 and AsH. The fragmentation of the trideuteromethyl derivative 2-d3+ proves that all H atoms of the neutral fragments originate specifically from the methyl ligand. Identical fragmentation behavior is observed for metastable m-tolyl arsenium cation, m-CH3C6H4As+H, 2tol+. The loss of AsH generates ions C7H7+ which requires rearrangement in 2+ and bond formation between the phenyl and methyl ligands prior to fragmentation. The DFT calculations confirm that the precursor of this fragmentation is the benzyl methylarsenium cation 2bzl+, and that 2bzl+ is also the precursor ion fo the elimination of H2. The analysis of the pathways for rearrangements of 2+ to the key intermediate 2bzl+ by DFT calculations show that the preferred route corresponds to a 1,2-H shift of a H atom from the CH3 ligand to the As atom and a shift of the phenyl group in the reverse direction. The expected rearrangement by a reductive elimination of the As atom, which is observed for the phenylarsenium cation and for halogeno phenyl arsenium cations, requires much more activation enthalpy.  相似文献   

12.
Poly[1,2,(4)-phenylenevinyleneanisylaminium] 1 was synthesized by one-pot palladium-catalyzed polycondensation of N-(3-bromo-4-vinylphenyl)-N-(4-methoxyphenyl)-N-(4-vinylphenyl)amine 3 and subsequent oxidation with the thianthrene cation radical tetrafluoroborate: compound 1 three-directionally satisfies a non-Kekulé-type pi-conjugation and the ferromagnetic connectivity of the unpaired electrons of the triarylaminium cationic radical. The average molecular weight of the polymer was 4700-5900 (degree of polymerization = 11-14), which gave a single molecular-based and globular-shaped image of ca. 15 nm diameter by atomic and magnetic force microscopies under ambient conditions. The aminium polyradical 1 with a spin concentration (determined by iodometry) of 0.65 spin/unit displayed an average S (spin quantum number) value of 7/2 even at 70 degrees C according to NMR and magnetization measurements.  相似文献   

13.
The reaction of vic-dioximes with the organonitrile platinum(IV) complexes trans-[PtCl4(RCN)2] (R = Me, CH2Ph, Ph, vic-dioxime = dimethylglyoxime; R = Me, vic-dioxime = cyclohexa-, cyclohepta-, and cyclooctanedione dioximes) proceeds rapidly under relatively mild conditions and affords products of one-end addition of the dioximes to the nitrile carbon, i.e. [PtC4(NH=C(R)ON=[spacer]=NOH)2] (1-6) (R = Me, CH2Ph, Ph, spacer = C(Me)C-(Me) for dimethylglyoxime; R = Me, spacer = C[C4H8]C, C[C5H10]C, C[C6H12]C for the other dioximes), giving a novel type of metallaligand. All addition compounds were characterized by elemental analyses (C, H, N, C1, Pt), FAB mass spectrometry, and IR and 1H, 13C[1H], and 195Pt NMR spectroscopy. X-ray structure determination of the dimethylformamide bis-solvate [PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] x 2DMF (la) disclosed its overall trans geometry with the dimethylglyoxime part in anti configuration and the amidine one-end (rather than N,N-bidentate) coordination mode of the N-donor ligands. When a mixture of cis- and trans-[PtC4(MeCN)2] in MeCN was treated with dimethylglyoxime, the formation of, correspondingly, cis- and trans-[PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] (1) was observed and cis-to-trans isomerization in DMSO-d6 solution was monitored by 1H, 2D [1H,15N] HMQC, and 195Pt NMR spectroscopies. Although performed ab initio calculations give evidence that the trans geometry is the favorable one for the iminoacylated species [PtCl4-(ligand)2], the platinum(IV) complex [PtCl4(NH=C(Me)ON=C[C4Hs]C=NOH)2] (4) was isolated exclusively in cis configuration with the two metallaligand "arms" held together by intramolecular hydrogen bonding between the two peripheral OH groups, as it was proved by single-crystal X-ray diffractometry. The classic substitution products, e.g. [PtC12(N,N-dioximato)2] (12-15), are formed in the addition reaction as only byproducts in minor yield; two of them, [PtCl2(C7H11N2O2)2] (14) and [PtCl2(C8H13N2O2)2] (15), were structurally characterized. Complexes (12-15) were also prepared by reaction of the vic-dioximes with [PtCl4L(Me2SO)] (L = Me2SO, MeCN), but monoximes (Me2C=NOH, [C4H8]C=NOH, [C5H10]C=NOH, PhC(H)=NOH, (OH)C6H4C(H)= NOH) react differently adding to [PtCl4(MeCN)(Me2SO)] to give the corresponding iminoacylated products [PtCl4(NH=C(Me)ON=CRR')(Me2SO)](7-11).  相似文献   

14.
15.
The reaction of the activated olefins 1 with the allylic carbonate 2, having a hydroxy group at the terminus of the carbon chain, in the presence of catalytic amounts of Pd(2)dba(3).CHCl(3) and dppe in THF at room temperature gave the corresponding cycloaddition products, tetrahydrofuran derivatives 5, in good to very high yields. The diastereoselectivities (trans/cis ratios) of the products were in the range of ca. 60-70/40-30. The reaction of 1 with the hydroxy allylic carbonate 3 in the presence of catalytic amounts of Pd(2)dba(3).CHCl(3) and (o-tolyl)(3)P in THF at 50 degrees C afforded the corresponding cycloaddition products, tetrahydropyran derivatives 6, in good to high yields. The trans/cis ratios of the products were in the range of ca. 0-40/99-80. The reaction of 1a with the hydroxy allylic carbonate 4 needed higher reaction temperatures (approximately 100 degrees C) to give the cycloaddition product, the oxepane 7a, in 31% yield with low diastereoselectivity. Next, catalytic asymmetric syntheses of tetrahydrofuran and -pyran derivatives were carried out. With the Trost ligand 15, good to high ees were accomplished in the cycloaddition, although the diastereoselectivities were of low level. With the Hayashi ligand 16, good to high ees were also achieved in the cycloaddition. The absolute stereochemistries of the major enantiomers of 5l, 5m, and 6d were determined unambiguously by X-ray crystallographic analysis: trans-(2R,4R)-5l, cis-(2S,4R)-5l, 4R-5m, trans-(2S,4S)-6d, and cis-(2R,4S)-6d were major enantiomers. Based upon the absolute stereochemistries of the major enantiomers, the mechanism of catalytic asymmetric induction in the cycloaddition reaction is discussed.  相似文献   

16.
Matrix EPR studies and quantum chemical calculations have been used to characterize the consecutive H-atom shifts undergone by the nitrogen-centered parent radical cations of propargylamine (1b*+) and allylamine (5*+) on thermal or photoinduced activation. The radical cation rearrangements of these unsaturated parent amines occur initially by a 1,2 H-atom shift from C1 to C2 with pi-bond formation at the positively charged nitrogen; this is followed by a consecutive reaction involving a second H-atom shift from C2 to C3. Thus, exposure to red light (lambda > 650 nm) converts 1b*+ to the vinyl-type distonic radical cation 2*+ which in turn is transformed on further photolysis with blue-green light (lambda approximately 400-600 nm) to the allene-type heteroallylic radical cation 3*+. Calculations show that the energy ordering is 1b*+ > 2*+ > 3*+, so that the consecutive H-atom shifts are driven by the formation of more stable isomers. Similarly, the parent radical cation of allylamine 5*+ undergoes a spontaneous 1,2-hydrogen atom shift from C1 to C2 at 77 K with a t1/2 of approximately 1 h to yield the distonic alkyl-type iminopropyl radical cation 6*+; this thermal reaction is attributed largely to quantum tunneling, and the rate is enhanced on concomitant photobleaching with visible light. Subsequent exposure to UV light (lambda approximately 350-400 nm) converts 6*+ by a 2,3 H-shift to the 1-aminopropene radical cation 7*+, which is confirmed to be the lowest-energy isomer derived from the ionization of either allylamine or cyclopropylamine. Although the parent radical cations of N, N-dimethylallylamine (9*+) and N-methylallylamine (11*+) are both stabilized by the electron-donating character of the methyl group(s), the photobleaching of 9*+ leads to the remarkable formation of the cyclic 1-methylpyrrolidine radical cation 10*+. The first step of this transformation now involves the migration of a hydrogen atom to C2 of the allyl group from one of the methyl groups (rather than from C1); the reaction is then completed by the cyclization of the generated MeN + (=CH2) CH2CH2CH2* distonic radical cation, possibly in a concerted overall process. In contrast to the ubiquitous H-atom transfer from carbon to nitrogen that occurs in the parent radical cations of saturated amines, the alternate rearrangements of either 1b*+ or 5*+ to an ammonium-type radical cation by a hypothetical H-atom shift from C1 to the ionized NH2 group are not observed. This is in line with calculations showing that the thermal barrier for this transformation is much higher (approximately 120 kJ mol-1) than those for the conversion of 1b*+ --> 2*+ and 5*+--> 6*+ (approximately 40-60 kJ mol-1).  相似文献   

17.
The reactions of the anticancer complex trans-[PtCl2{(E)-HN=C(OMe)Me}2] (trans-EE) with a series of ribo and deoxyribodinucleotides have been studied by HPLC and 2D [1H, 15N] HMQC NMR spectroscopy and compared with those of the inactive trans isomer of cisplatin, trans-[PtCl2(NH3)2] (trans-DDP). Reactions of trans-EE with r(ApG) and d(ApG) take place through solvolysis of the starting substrate and subsequent formation of trans G-N7/monochloro and G-N7/monoaqua adducts. Slowly, the monofunctional adducts evolve to a bifunctional adduct forming an unprecedented and unexpected A-N3/G-N7 platinum cross-link spanning two trans positions. For stereochemical reasons, trans platinum complexes cannot form N7/N7 cross-links between adjacent purines in di- or polynucleotides. For the reverse sequence r(GpA), no chelate structure was formed even after a two-week reaction. The reaction of trans-DDP with r(ApG) produces many more products than the analogous reaction with trans-EE. One of these products was identified as the A-N3/G-N7 trans-chelate.  相似文献   

18.
Dissolution of a tetrafluoroborate or perchlorate salt of [M(OH(2))(6)](2+) (M = Co, Ni, Cu) in 1-ethyl-3-methylimidazolium tetraluforoborate ionic liquid ([emim]BF(4)) results in significant solvatochromism and increasing intensity of color. These observations arise from partial dehydration from the octahedral [M(OH(2))(6)](2+) and formation of the tetrahedral [M(OH(2))(4)](2+). This reaction was monitored by the intense absorption band due to the d-d transition in the UV-vis absorption spectrum. The EXAFS investigation clarified the coordination structures around M(2+) {[Co(OH(2))(4)](2+), R(Co-O) = 2.17 ?, N = 4.2; [Cu(OH(2))(4)](2+), R(Cu-O) = 2.09 ?, N = 3.8}. (1)H and (19)F NMR study suggested that both [emim](+) and BF(4)(-) are randomly arranged in the second-coordination sphere of [M(OH(2))(4)](2+).  相似文献   

19.
The surface tensions were measured at atmospheric pressure, with use of a ring tensiometer, of a series of alcoholic solutions of closely related ionic liquids: 1-methyl-3-methylimidazolium methylsulfate, [MMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium methylsulfate, [BMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OcSO4] in alcohol (methanol, or 1-butanol at 298.15 K) and of 1-hexyloxymethyl-3-methylimidazolium tetrafluoroborate, [C6H(13)OCH2MIM][BF4], 1,3-dihexyloxymethylimidazolium tetrafluoroborate, [(C6H13OCH2)2IM][BF4] in alcohol (methanol, or 1-butanol, or 1-hexanol at 308.15 and 318.5 K) and hexyl(2-hydroxyethyl)dimethylammonium bromide, C6Br in 1-octanol at 298.15 K. The set of ammonium ionic liquids of different cations and anions (C2Br, C2BF4, C2PF6, C2N(CN)2, C3Br, C4Br and C6Br) was chosen to show the influence of small amount of the ammonium ionic liquid on the surface tension of water at 298.15 K. The influence of the cation, or anion alkyl chain length on the properties under study (densities and surface tension) was tested.  相似文献   

20.
The enthalpies of vaporisation, Δ(vap)H(298), of seven ionic liquids (ILs) (four imidazoliums, a pyridinium, a phosphonium and an isouronium) have been determined by temperature programmed desorption using line of sight mass spectrometry. They were: 1-ethyl-3-methylimidazolium bis(pentafluoroethyl)phosphinate, [C(2)C(1)Im][PO(2)(C(2)F(5))(2)]; 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)]; 1-butyl-3-methylimidazolium tetrafluoroborate, [C(4)C(1)Im][BF(4)]; 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C(6)C(1)Im][FAP]; 1-butylpyridinium methylsulfate, [C(4)Py][C(1)OSO(3)]; trihexyl(tetradecyl)phosphonium tetrafluoroborate, [P(6,6,6,14)][BF(4)] and O-ethyl-N,N,N',N'-tetramethylisouronium trifluoromethanesulfonate, [C(2)(C(1))(4)iU][TfO]. The values were found to be consistent with a previously proposed, predictive, model in which Δ(vap)H(298) is decomposed into a Coulombic component (computable from the IL density) and van der Waals components from the anion and cation. Two previously predicted values of Δ(vap)H(298) were found to be within 6 kJ mol(-1) of the measured experimental values. Values for the van der Waals components are tabulated for eleven cations and twelve anions. Predictions are made for Δ(vap)H(298) for 13 ILs with as yet unmeasured Δ(vap)H(298) values (using experimental molar volumes), and for a further 44 ILs using estimated molar volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号