首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study applies particle image velocimetry (PIV) to an optical spark-ignition direct-injection engine in order to investigate the effects of fuel-injection on in-cylinder flow. Five injection timing combinations, each employing a stoichiometric 1:1 split ratio double-injection strategy, were analysed at an engine speed of 1200 RPM and an intake pressure of 100 kPa. Timings ranged from two injections in the intake stroke to two injections in the compression stroke, resulting in a variety of in-cylinder environments from well-mixed to highly turbulent. PIV images were acquired at a sampling frequency of 5 kHz on a selected swirl plane. The flow fields were decomposed into mean and fluctuating components via two spatial filtering approaches — one using a fixed 8 mm cut-off length, and the other using a mean flow speed scaled cut-off length which was tuned in order to match the turbulent kinetic energy (TKE) profile of a 300 Hz temporal filter. From engine performance tests, the in-cylinder pressure traces, indicated mean effective pressure (IMEP), and combustion phasing data showed very high sensitivity to injection timing variations. To explain the observed trend, correspondence between the measured flow and these performance parameters was evaluated. An expected global trend of increasing turbulence with retarded injection timing was clearly observed; however, relationships between TKE and burn rate were not as obvious as anticipated, suggesting that turbulence is not the predominant factor associated with injection timing variations which impacts engine performance. Stronger links were observed between bulk flow velocity and burn rate, particularly during the early stages of flame development. Injection timing was also found to have a significant impact on combustion stability, where it was observed that low-frequency flow fluctuation intensity revealed strong similarities with the coefficient of variance (CoV) of IMEP, suggesting that these fluctuations are a suitable measure of cycle-to-cycle variation — likely due to the influence of bulk flow on flame kernel development.  相似文献   

2.
3.
In-cylinder air flow structures are known to play a major role in mixture preparation and flame development in spark-ignition engines. In this paper both LDV and PIV measurements were undertaken in an optical spark-ignition at 1500 RPM 0.5 bar inlet plenum pressure. One of the primary PIV planes was vertical cutting through the centrally located spark plug (tumble plane) inside the pentroof at ignition timing. The other plane was horizontal inside the pentroof 1 mm below the spark plug LDV was conducted 1 mm below the spark plug on a line from inlet to exhaust but also on a lower line 14 mm below the spark plug. In-cylinder PIV data at specific crank angles in the intake and compression strokes were also analysed on the central tumble plane and on a horizontal plane 14 mm below the spark plug. The combination of both techniques allowed high spatial and temporal resolution as the two data sets complemented each other to provide details of mean flow and turbulence characteristics on different levels, aiming ultimately for quantification of integral time scales and length scales. LDV cycle-resolved analysis distinguished between the classic approach of using the time integral of the autocorrelation function to obtain the integral time scale and a high-frequency cut-off analysis to obtain high- and low-frequency fluctuations about an in-cycle mean.  相似文献   

4.
Transition to turbulence in axially symmetrical laminar pipe flows with periodic time dependence classified as pure oscillating and pulsatile (pulsating) ones is the concern of the paper. The current state of art on the transitional characteristics of pulsatile and oscillating pipe flows is introduced with a particular attention to the utilized terminology and methodology. Transition from laminar to turbulent regime is usually described by the presence of the disturbed flow with small amplitude perturbations followed by the growth of turbulent bursts. The visual treatment of velocity waveforms is therefore a preferred inspection method. The observation of turbulent bursts first in the decelerating phase and covering the whole cycle of oscillation are used to define the critical states of the start and end of transition, respectively. A correlation study referring to the available experimental data of the literature particularly at the start of transition are presented in terms of the governing periodic flow parameters. In this respect critical oscillating and time averaged Reynolds numbers at the start of transition; Re os,crit and Re ta,crit are expressed as a major function of Womersley number, $\sqrt {\omega ^\prime } $ defined as dimensionless frequency of oscillation, f. The correlation study indicates that in oscillating flows, an increase in Re os,crit with increasing magnitudes of $\sqrt {\omega ^\prime } $ is observed in the covered range of $1<\sqrt {\omega ^\prime } <72$ . The proposed equation (Eq. 7), ${\rm{Re}}_{os,crit} ={\rm{Re}}_{os,crit} \left( {\sqrt {\omega ^\prime } } \right)$ , can be utilized to estimate the critical magnitude of $\sqrt {\omega ^\prime }$ at the start of transition with an accuracy of ±12?% in the range of $\sqrt {\omega ^\prime } <41$ . However in pulsatile flows, the influence of $\sqrt {\omega ^\prime }$ on Re ta,crit seems to be different in the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ . Furthermore there is rather insufficient experimental data in pulsatile flows considering interactive influences of $\sqrt {\omega ^\prime } $ and velocity amplitude ratio, A 1. For the purpose, the measurements conducted at the start of transition of a laminar sinusoidal pulsatile pipe flow test case covering the range of 0.21<?A 1?<0.95 with $\sqrt {\omega ^\prime } <8$ are evaluated. In conformity with the literature, the start of transition corresponds to the observation of first turbulent bursts in the decelerating phase of oscillation. The measured data indicate that increase in $\sqrt {\omega ^\prime } $ is associated with an increase in Re ta,crit up to $\sqrt {\omega ^\prime } =3.85$ while a decrease in Re ta,crit is observed with an increase in $\sqrt {\omega ^\prime } $ for $\sqrt {{\omega }'} >3.85$ . Eventually updated portrait is pointing out the need for further measurements on i) the end of transition both in oscillating and pulsatile flows with the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ , and ii) the interactive influences of $\sqrt {\omega ^\prime } $ and A 1 on Re ta,crit in pulsatile flows with the range of $\sqrt {\omega ^\prime } >8$ .  相似文献   

5.
DNS of a turbulent channel flow subjected to a step change in pressure gradient are performed to facilitate a direct comparison between ramp-up and ramp-down flows. Strong differences are found between behaviours of turbulence in the two flows. The wall shear stress in the ramp-up flow first overshoots, and then strongly undershoots the quasi-steady value in the initial stage of the excursion, before approaching the quasi-steady value. In a strongly decelerating flow, the wall shear stress tends to first undershoot but then overshoot the quasi-steady value. ??Slow?? response of turbulence as well as flow inertia is responsible for these behaviours. In the ramp-up flow, the response of turbulence is similar to that observed in uniformly accelerating flows from previous studies, exhibiting a three-stage development. However, the transition between the various stages is more gradual and the responding stage is much longer and slower in the flows considered here. It has been shown that the delay in the near wall region is longer than that in the buffer layer confirming that turbulence response first occurs at the location of peak turbulence production. In a strongly decelerating flow, the response of turbulence exhibits a two-stage development. In both ramp-up and ramp down flows, the energy distribution in the three components of turbulent kinetic energy deviates from that of the steady flow. In a ramp-up flow, more energy is in $u_1^\prime $ and less in $u_2^\prime $ and $u_3^\prime $ , whereas the trend is reversed in a ramp-down flow. This is a reflection of the redistribution of turbulence from $u_1^\prime $ to $u_2^\prime $ and $u_3^\prime $ .  相似文献   

6.
Numerical predictions with a differential Reynolds stress closure, which in its original formulation explicitly takes into account possible states of turbulence on the anisotropy-invariant map, are presented. Thus the influence of anisotropy of turbulence on the modeled terms in the governing equations for the Reynolds stresses is accounted for directly. The anisotropy invariant Reynolds stress model (AIRSM) is implemented and validated in different finite-volume codes. The standard wall-function approach is employed as initial step in order to predict simple and complex wall-bounded flows undergoing large separation. Despite the use of simple wall functions, the model performed satisfactory in predicting these flows. The predictions of the AIRSM were also compared with existing Reynolds stress models and it was found that the present model results in improved convergence compared with other models. Numerical issues involved in the implementation and application of the model are also addressed.  相似文献   

7.
8.
We present a technique and the results of linear stability analysis for the viscous incompressible flows in an annulus between two concentric coaxial spheres, of which the outer remains stationary while the inner is rotated. We show that the characteristics of the main flow instability strongly depend on the layer thickness, qualitatively as well quantitatively. The critical perturbation for the main flow in a thin layer is monotonic and has the form of a system of ring vortices covering the entire flow region from one pole to the other; the vortices are axisymmetric but nonsymmetric about the equatorial plane. The critical perturbation in a thick layer is nonmonotonic, three-dimensional, and nonsymmetric about the equatorial plane. The shape of the critical perturbation depends on the layer thickness. A comparison with the experimental data is carried out.  相似文献   

9.
An adaptive wavelet method for solving the two-dimensional Navier–Stokes equations is compared with nonlinear Fourier filtering and nonlinear wavelet filtering of the pseudospectral method at each time step. The methods are each applied to a highly nonlinear flow typical of two-dimensional turbulence, the merger of two positive vortices pushed together by a weaker negative vortex, and the results are compared with a reference classical pseudospectral method. Nonlinear Fourier filtering uses 1.7 times fewer active modes than the reference simulation at the time of merger (when the flow is most complicated) and retains the overall dynamics and structure of the flow. However, it induces spurious oscillations in the background. Nonlinear wavelet filtering simulation uses 9.2 times fewer modes than the reference simulation at the time of merger, and reduces the errors in the solution. The adaptive wavelet simulation replicates precisely the dynamics and spatial structure of the reference simulation while retaining the high compression rate of the nonlinear wavelet filtering simulation. In addition we observe that the number of active wavelet modes remains quasi-constant during the whole merging process, independent of the strength of the vorticity gradients. On the contrary, the number of active Fourier modes is multiplied by 5 when the vorticity gradients are strongest. The increased accuracy of the adaptive wavelet simulation is due to the security zone added around the active coefficients and to the compression of the nonlinear term of the Navier–Stokes equations in the wavelet basis. These results suggest that nonlinear Fourier filtering of a classical pseudospectral method cannot produce significant improvement, but that the adaptive wavelet method combines a consistently high compression rate with high accuracy. Received 22 April 1997 and accepted 11 August 1997  相似文献   

10.
Simultaneous high repetition-rate, two-point hydroxyl (OH) time-series measurements with associated PLIF/PIV measurements are employed to investigate spatio–temporal scales and flame-velocity interactions in turbulent opposed jets sustaining methane-air double flames. For a fuel-side equivalence ratio, ϕ B  = 1.2, a rich premixed flame exists on the fuel side while a diffusion flame exists on the air side of the stagnation plane. The bulk Reynolds number (Re) and strain rate (SR) can be adjusted to generate flames at ϕ B  = 1.2 with both well separated and completely merged flame fronts. Simultaneous PLIF/PIV measurements highlight distinct spatial OH structures of the premixed and diffusive fronts corresponding to variations in the flow field. The self-propagating tendency of the rich premixed front causes large-scale wrinkling, thereby enhancing the OH contour length by 15% as compared to the diffusive front. Two-point OH time-series measurements are implemented to quantify both spatial and temporal fluctuations via study of radial length and time scales. In general, these integral length and time scales follow similar trends and reach a minimum at the axial location of peak [OH]. In comparison to merged double flames having higher Re and SR, greater OH fluctuations are observed in the rich-premixed front as compared to the diffusive front for a well separated double flame. Because of the developing turbulence, the OH length scales exhibit reduced axial gradients across the reaction zone for higher Re in comparison to lower Re. A stochastic time-series simulation, using a state relationship based on a joint mixture fraction and progress variable, is utilized to extract estimated scalar time scales from those of measured OH. The simulations indicate that the hydroxyl fluctuations in double flames are only twice those of the underlying conserved scalar. “Turbulent Opposed-Jet Double Flames” is submitted for consideration as a full length article to Flow Turbulence and Combustion.  相似文献   

11.
The X-Ray Diffraction technique has been widely applied for decades in many industrial sectors for the quantification of residual stresses in metallic parts. The present paper describes the laboratory calibration of this technique with the aim of adapting it to the quantification of global stresses (non residual) in metallic structures, in service for civil engineering and building. A small structure specifically built for this research has been repeatedly loaded at laboratory. In each load level the global stresses in a bar of the structure have been quantified by means of X-Ray Diffraction technique. The experimental procedure allows one to discern the residual stresses and the structural (mechanical) stresses in service. The correlation between the stresses deduced experimentally and the applied stresses is excellent. As conclusion, it can be stated that the X-Ray Diffraction technique as a non-destructive technique, has been calibrated to be used for stress deduction in metallic elements in service.  相似文献   

12.
We study Lagrangian statistics of the magnitudes of velocity and pressure gradients in isotropic turbulence by quantifying their correlation functions and their characteristic time scales. In a recent work (Yu and Meneveau, Phys Rev Lett 104:084502, 2010), it has been found that the Lagrangian time-correlations of the velocity and pressure gradient tensor and vector elements scale with the locally-defined Kolmogorov time scale, evaluated from the locally-averaged dissipation-rate (? r ) and viscosity (ν) according to $\tau_{K,r}=\sqrt{\nu/\epsilon_r}$ . In this work, we study the Lagrangian time-correlations of the absolute values of velocity and pressure gradients. It has long been known that such correlations display longer memories into the inertial-range as well as possible intermittency effects. We explore the appropriate temporal scales with the aim to achieve collapse of the correlation functions. The data used in this study are sampled from the web-services accessible public turbulence database (http://turbulence.pha.jhu.edu). The database archives a 10244 (space+time) pseudo-spectral direct numerical simulation of forced isotropic turbulence with Taylor-scale Reynolds number Re λ ?=?433, and supports spatial differentiation and spatial/temporal interpolation inside the database. The analysis shows that the temporal auto-correlations of the absolute values extend deep into the inertial range where they are determined not by the local Kolmogorov time-scale but by the local eddy-turnover time scale defined as $\tau_{e,r}= r^{2/3}\epsilon_r^{-1/3}$ . However, considerable scatter remains and appears to be reduced only after a further (intermittency) correction factor of the form of (r/L) χ is introduced, where L is the turbulence integral scale. The exponent χ varies for different variables. The collapse of the correlation functions for absolute values is, however, less satisfactory than the collapse observed for the more rapidly decaying strain-rate tensor element correlation functions in the viscous range.  相似文献   

13.
A review of selected experiments on coherent structures in turbulent shear flows is performed. Different experimental approaches (conditional averages, filtering techniques, wavelets, linear stochastic estimation and proper orthogonal decomposition, etc.) are illustrated and their links with computations (LES, DNS, SDM, etc.) is emphasized. It is particularly shown that some kind of universal behavior of the background turbulence can be retrieved from these various experimental methods. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
姜楠  王立坤 《实验力学》1999,14(2):165-169
研究了用条件采样方法检测壁湍流相干结构的门限值与壁湍流相干结构平均粹发周期检测结果之间的关系,根据用壁湍流流向脉动速度自相关函数检测壁湍流相干结构平均猝发周期的方法,提出了用自相关法确定壁湍流相干结构条件采样的门限值,从而检测壁湍流相干结构的方法  相似文献   

15.
投影散斑相关法测量精度影响因素的综合分析   总被引:6,自引:0,他引:6  
本文用实验方法对影响投影散斑相关方法测量精度的几种因素进行分析和研究,从理论上分析和评价记录场角、投影视场角、离焦对测量结果精度的影响,以及这三种因素的综合影响,指出投影散斑相关方法具有较高的测量精度,能应用于位移的实际工程测量。  相似文献   

16.
Institute of Mechanics, Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 29, No. 9, pp. 3–18, September, 1993.  相似文献   

17.
An accurate and efficient artificial neural network based on genetic algorithm (GA) is developed for predicting of nanofluids viscosity. The genetic algorithm (GA) is used to optimize the neural network parameters. The experimental viscosity in eight nanofluids in the range 238.15–343.15 K with the nanoparticle volume fraction up to 9.4% was used. The obtained results show that the GA-NN model has a good agreement with the experimental data with absolute deviation 2.48% and high correlation coefficient (R ≥ 0.98). The Results also reveals that GA-NN model outperforms to the conventional neural nets in predicting the viscosity of nanofluids with the overall percentage improvement of 39%. Furthermore, the results have also been compared with Einstein, Batchelor and Masoumi et al. models. The findings demonstrate that this model is an efficient method and have better accuracy.  相似文献   

18.
The effects of mean flame radius and turbulence on self-sustained combustion of turbulent premixed spherical flames in decaying turbulence have been investigated using three-dimensional direct numerical simulations (DNS) with single step Arrhenius chemistry. Several flame kernels with different initial radius or initial turbulent field have been studied for identical conditions of thermo-chemistry. It has been found that for very small kernel radius the mean displacement speed may become negative leading ultimately to extinction of the flame kernel. A mean negative displacement speed is shown to signify a physical situation where heat transfer from the kernel overcomes the heat release due to combustion. This mechanism is further enhanced by turbulent transport and, based on simulations with different initial turbulent velocity fields, it has been found that self-sustained combustion is adversely affected by higher turbulent velocity fluctuation magnitude and integral length scale. A scaling analysis is performed to estimate the critical radius for self-sustained combustion in premixed flame kernels in a turbulent environment. The scaling analysis is found to be in good agreement with the results of the simulations.  相似文献   

19.
We show that the two-dimensional exterior boundary-value problem (flow past a cylinder) associated with a class of shear-thinning liquid models possesses at least one solution for data of arbitrary “size”. This result must be contrasted with its counterpart for the Navier–Stokes model, where a similar result is known to hold, to date, only if the size of the data is sufficiently restricted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号