首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper represents results on numerical investigation of flow and heat transfer between two isothermal vertical plates under laminar natural convection. A system of complete Navier–Stokes equations is solved for a two-dimensional gas flow between the plates along with additional rectangular regions (connected to inlet and outlet sections), whose characteristic sizes are much greater than the spacing between the plates. The calculations were performed over very wide ranges of Rayleigh number Ra = 10 ÷ 105 and a relative channel length AR = L/w = 1 ÷ 500. The influence of the input parameters on the gas-dynamic and thermal structure of thermogravitational convection, the local and mean heat transfer, and also the gas flow rate between the plates (convective draft. We determined sizes of the regions and regime parameters when the local heat flux on the walls tends to zero due to the gas temperature approach to the surface temperature. It is shown that the mean heat transfer decreases as the relative channel length AR grows, whereas the integral gas flow rate (convective draft) and Reynolds number in the channel Re = 2wUm/ν increase. The use of a modified Rayleigh number Ra* = Ra · (w/L) (Elenbaas number) leads to generalization of calculation data on mean heat transfer. These data are in good agreement with the correlations for heat transfer [1, 2] and gas flow rate [3]. The reasons of variation of the data in the range of low Rayleigh numbers are discussed in detail.  相似文献   

2.
Results of numerical study of laminar free convection and heat transfer in a vertical plane-parallel channel with two thin adiabatic fins on its walls are presented. The channel has the open inlet and outlet, and its surfaces are maintained at the same temperature. The channel height is unchanged with elongation parameter A = L/w = 10, and the fins are located in the middle of the channel toward each other. Fin height l/w = 0 ÷ 0.4 and Rayleigh number Ra = 102 ÷ 105 are varied in calculations. The effect of these parameters on the flow structure, temperature field, local and integral heat transfer, and gas flow caused by gravitational forces are analyzed in detail. Numerical analysis is based on solving the full Navier–Stokes and energy equations in twodimensional statement and Boussinesq approximation. To determine the dynamic and thermal parameters at the inlet and outlet, the calculation is carried out with two large volumes attached to the inlet and outlet. The features of the flow and heat transfer at separated flow around the channel fins are studied in detail in this work.  相似文献   

3.
Results of numerical investigation of the flow and heat transfer at turbulent free convection between the vertical parallel isothermal plates with different temperatures are presented. The temperature factor R T varied within ?2 ÷ 1. The Rayleigh number changed within Ra = 107 ÷ 109, and the ratio of geometrical sizes of plates and distances between them was constant A = L/w = 10. Numerical studies were performed via the solution to the two-dimensional Navier—Stokes equations and energy equation in Boussinesq approximation. The considered boundary-value problem has the unknown conditions at the inlet and outlet between the plates. To describe turbulence, the modified low-Reynolds k-? model was used. The effect of the temperature factor on the flow structure at the channel inlet and outlet was analyzed. Data on distributions of velocities and temperatures between the plates, local and integral heat transfer allow deeper understanding of the mechanism of transfer processes between the parallel plates with asymmetrical heating.  相似文献   

4.
Numerical investigation of laminar free convection heat transfer in the vertical parallel plate channel with asymmetric heating is presented. Both inlet and exit effects are included into the analysis. A numerical solution is obtained for a Prandtl number of 0.71 and for modified Rayleigh number [`(Ra)]\overline {Ra} = 10−1 ÷ 105, and varying heating ratio TR = 0 ÷ 1 and aspect ratio A = 10. Fully elliptic Navier-Stokes and energy equations are solved using the finite volume techniques with staggered grid arrangements. The obtained results show a strong influence of the temperature ratio on local and average heat transfer coefficient on the hot and cold plates. With reduction of TR the heat transfer parameter on the hot wall grows, and on the cold one, on the contrary, it decreases. As a result, the total heat exchange from two plates depends poorly on the parameter TR.  相似文献   

5.
The properties of free convection in a conducting fluid in laminar regime near a hot solid vertical w all in the presence of a transverse magnetic field are theoretically analyzed. The existence of two regimes of heat transfer from the wall to the fluid are established. In the first regime, at small heights x?x* where the magnetic field effect can be disregarded, heat transfer is described by the well-known results for a free convective boundary layer in a nonconducting fluid with the Nusselt number Nuxx3/4. In the second regime, at x? x* where the magnetic field plays a crucial role, the dependence of heat transfer on the height and field strength is \(Nu_x \propto {{\sqrt x } \mathord{\left/ {\vphantom {{\sqrt x } B}} \right. \kern-\nulldelimiterspace} B}\). The location of the boundary between these regimes strongly depends on the magnetic field, x*∝ B?4.  相似文献   

6.
The present study investigated fluid flow and natural convection heat transfer in an enclosure embedded with isothermal cylinder. The purpose was to simulate the three-dimensional natural convection by thermal lattice Boltzmann method based on the D3Q19 model. The effects of suspended nanoparticles on the fluid flow and heat transfer analysis have been investigated for different parameters such as particle volume fraction, particle diameters, and geometry aspect ratio. It is seen that flow behaviors and the average rate of heat transfer in terms of the Nusselt number (Nu) are effectively changed with different controlling parameters such as particle volume fraction (5 % ≤ φ ≤ 10 %), particle diameter (d p = 10 nm to 30 nm) and aspect ratio (0.5 ≤ AR ≤ 2) with fixed Rayleigh number, Ra = 105. The present results give a good approximation for choosing an effective parameter to design a thermal system.  相似文献   

7.
In this work, two-dimensional mixed convection and entropy generation of water-(Cu, Ag, Al2O3, and TiO2) nanofluids in a square lid-driven cavity containing two heat sources, have been numerically investigated. The upper lid and bottom wall of the cavity are maintained at a cold temperature TC, respectively. The governing equations along with boundary conditions are solved using the finite volume method. Comparisons with the previous results were performed and found to be in excellent agreement. The effects of the solid volume fraction (0≤φ≤0.10), Rayleigh (103≤Ra≤105) and Reynolds (1≤Re≤500) numbers, and different types of nanofluids on the total entropy generation St and on entropy generation due to heat transfer Sh are presented and discussed. Moreover, the heat sources positions have an effect on the total entropy generation and Bejan number. It was found that St and Sh decrease with increase of φ, Ra, and Re.  相似文献   

8.
Numerical modeling of heat exchange at a laminar stationary and pulsatile flow in rectangular channels with different aspect ratios of side lengths γ has been carried out by a finite difference method for two boundary conditions: a constant wall temperature and a constant heat flux density on the wall. For the boundary condition of the first kind, the similarity of distributions of the heat flux density and shear stress on the walls over the channel perimeter has been established. The reasons for a nonmonotonous dependence of the initial thermal interval length on γ are discussed. For the boundary condition of the second kind, the difference of the Nusselt number averaged over the perimeter at γ → 0 from its value for a flow in a flat channel has been explained. An increase in the Nusselt number averaged over the perimeter and the period of oscillations has been revealed for a pulsatile flow in the quasi-stationary regime at large amplitudes of the oscillations of the velocity averaged over the cross section.  相似文献   

9.
Two-dimensional steady-state laminar natural convection was studied numerically for differentially heated air-filled closed cavity with adiabatic top and bottom walls. The temperature of the left heated wall and cooled right wall was assumed to be constant. The governing equations were iteratively solved using the control volume approach. In this paper, the effects of the Rayleigh number and the aspect ratio were examined. Flow and thermal fields were exhibited by means of streamlines and isotherms, respectively.Variations of the maximum stream function and the average heat transfer coefficient were also shown. The average Nusselt number and was correlated to the Rayleigh number based on curve fitting for each aspect ratio. The investigation covered the range 104 ≤ RA ≤ 107 and is done at Prandtl number equal to 0.693. The result shows the average Nusselt number is the increasing function of Rayleigh number. As the aspect ratio increases, Nusselt number decreases along the hot wall of the cavity. As Rayleigh number increases, Nusselt number increases. Result indicates that at constant aspect ratio, with increase in Rayleigh number the heat transfer rate increases.  相似文献   

10.
An experimental investigation on the heat transfer effectiveness of solid and slit ribs mounted on the bottom surface of a rectangular channel has been carried out at Reynolds numbers of 13400, 22600, 32100 and 40800. The rib height to hydraulic diameter ratio (e/D h)set during experiment is equal to 0.0624. The surface Nusselt number results from transient liquid crystal thermography are presented. The heat transfer enhancement performance analysis has been carried out using entropy generation principle. The slit rib is superior to solid rib from both heat transfer augmentation and pressure penalty point of view. The performance of the slit rib is a function of the open area ratio (β) and the location of the slit (b) from the bottom test surface. The optimum open area ratio is 20% and the slit located symmetrically from the top and bottom surface of the rib is the optimum location of the slit. The heat transfer augmentation of the slit rib (β=20%) is 61% in comparison to 40% for the solid rib at Re=32100 and the pressure penalty for the slit rib is 7% lower than the solid rib. The entropy generation for the slit rib is 33% less than that of the solid rib.  相似文献   

11.
The current equilibrium is investigated, where the generation of the Hall electric field on the magnetic Debye radius r B = B 0/(4πen e) is considered by the drifting of the relativistic electrons crosswise to the strong magnetic field. In this case, the electron propagation is possible at the distance d that is essentially larger than the electron radius of the backward reflection in the magnetic field r 0 ? m e v z c/(eB 0). The instability of the joint drift motion of ions and electrons is investigated for the frequency oscillation w much higher than the ion cyclotron frequency w Bi and by 4π n i m i c 2 ? B 0 2 and (k · B 0) = 0. It is shown that the resonance effects by the ion beam’s plasma frequency w ? kv 0 = w pi leads to the generation of the nonpotential perturbations with the characteristic increment Imw ~ 10?1 ÷ 10? 2 w pi. Estimates show that the instability, associated with the propagation of the high-energy ion beam through the strong magnetic field, can essentially be like the edge-localized mode in tokamaks.  相似文献   

12.
A numerical experiment on the simulation of heat transfer from a sphere to a gas flow in a cylindrical channel in the Stokes and transient flow regimes has been described. Radial and axial profiles of the gas temperature and the dependences of drag coefficient Cd of the body and Nusselt number Nu on Reynolds number Re have been calculated and analyzed. The problem of the influence of the early drag crisis for a sphere on its heat transfer to the gas flow has been considered. The estimation of this phenomenon has shown that the early drag crisis of the sphere in a strongly turbulent flow causes a reduction in heat transfer from the sphere to the gas by three to six times (in approximately the same proportion as for its drag coefficient).  相似文献   

13.
Simple expressions have been derived for three photon distribution functions w N M (T), w N Z (T), and w N O (T) corresponding to three different methods for counting fluorescence photons from a single nanoparticle excited by continuous laser radiation. In contrast to the previously derived expressions represented in the form of N multiple integrals, the new expressions contain only single or double integrals of Poisson functions, which makes it possible to easily perform the numerical calculation of the photon distribution. The simplest photon counting method corresponds to the lengthiest function w N M (T); on the contrary, the simplest function w N O (T) corresponds to the most complex photon counting method. The functions w N M (T), w N Z (T), and w N O (T) are noticeably different in short time intervals T; however, the distributions calculated using these functions are almost indistinguishable from each other in long T intervals. This circumstance makes it possible to use the simplest function w N O (T) to consider the photon statistics measured by the simplest method. This possibility is particularly important for investigating the fluorescence photon statistics, where the intensity fluctuates.  相似文献   

14.
The problem statement and simulation results are presented concerning turbulent natural convection in a vertical cylindrical molten pool with internal heat generation and other parameters (inner Rayleigh number Ra i ∼ 1016–1017) corresponding to oxide core melt in a core catcher for NPP with VVER-1000. Commercial code FLUENT 6.3 was used for CFD calculations. The results on heat transfer are approximated by power law correlations for mean Nusselt numbers vs. Rayleigh number and pool height, describing the heat transfer at upper, lateral, and total boundaries of the cylinder. The influence of volumetric heat generation and material properties is studied. Spatial distribution of wall heat transfer is analyzed for different pool heights possible in the real core catcher. Along with serial calculations with isothermal boundary conditions, the cases with heat radiation conditions are considered. The results may be used for estimations of heat transfer and melt overheating in a VVER core catcher and for coefficient identification of simplified models of integrated system severe-accident codes.  相似文献   

15.
The problem of free convection fluid flow and heat transfer of Cu–water nanofluid inside a square cavity having adiabatic square bodies at its center has been investigated numerically. The governing equations have been discretized using the finite volume method. The SIMPLER algorithm was employed to couple velocity and pressure fields. Using the developed code, a parametric study was conducted and the effects of pertinent parameters such as Rayleigh number, size of the adiabatic square body, and volume fraction of the Cu nanoparticles on the fluid flow and thermal fields and heat transfer inside the cavity were investigated. The obtained results show that for all Rayleigh numbers with the exception of Ra = 104 the average Nusselt number increases with increase in the volume fraction of the nanoparticles. At Ra = 104 the average Nusselt number is a decreasing function of the nanoparticles volume fraction. Moreover at low Rayleigh numbers (103 and 104) the rate of heat transfer decreases when the size of the adiabatic square body increases while at high Rayleigh numbers (105 and 106) it increases.  相似文献   

16.
17.
The paper deals with the numerical study of heat and mass transfer in the process of direct evaporation air cooling in the laminar flow of forced convection in a channel between two parallel insulated plates with alternating wet and dry zones along the length. The system of Navier–Stokes equations and equations of energy and steam diffusion are being solved in two-dimensional approximation. At the channel inlet, all thermal gas-dynamic parameters are constant over the cross section, and the channel walls are adiabatic. The studies were carried out with varying number of dry zones (n = 0–16), their relative length (s/l = 0–1) and Reynolds number Re = 50–1000 in the flow of dry air (φ0 = 0) with a constant temperature at the inlet (T 0 = 30 °C). The main attention is paid to optimization analysis of evaporation cell characteristics. It is shown that an increase in the number of alternating steps leads to an increase in the parameters of thermal and humid efficiency. With an increase in Re number and a decrease in the extent of wet areas, the efficiency parameter reduces.  相似文献   

18.
Various calculations of the integral spectrum of γ-rays from the neutral pion decays generated in ppinteractions have been analyzed. The estimate of the integral γ-ray spectrum with allowance for the behavior of the cross section of π 0 production in the pp → pp + 0 + X reaction near the threshold for each channel and the proton spectrum at low energies (<1 GeV) proved to be much lower than those obtained in earlier calculations.  相似文献   

19.
The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (s) and the ratio thermal convection/compositional convection (r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10–3 substitutes for the generally accepted Ekman number (E ~ 10–15) and s ~ 10–6 substitutes for the inverse Rayleigh number 1/Ra ~ 10–30. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号