首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the turbulence modeling of second moment closure used both in RANS and PITM methodologies from a fundamental point of view and its capacity to predict the flow in a low turbulence wind tunnel of small axisymmetric contraction designed by Uberoi and Wallis. This flow presents a complex phenomenon in physics of fluid turbulence. The anisotropy ratio of the turbulent stresses τ 11/τ 22 initially close to 1.4 returns to unity through the contraction, but surprisingly, this ratio gradually increases to its pre-contraction value in the uniform section downstream the contraction. This point constitutes the interesting paradox of the Uberoi and Wallis experiment. We perform numerical simulations of the turbulent flow in this wind tunnel using both a Reynolds stress model developed in RANS modeling and a subfilter scale stress model derived from the partially integrated transport modeling method. With the aim of reproducing the experimental grid turbulence resulting from the effects of the square-mesh biplane grid on the uniform wind tunnel stream, we develop a new analytical spectral method of generation of pseudo-random velocity fields in a cubic box. These velocity fields are then introduced in the channel using a matching numerical technique. Both RANS and PITM simulations are performed on several meshes to study the effects of the contraction on the mean velocity and turbulence. As a result, it is found that the RANS computation using the Reynolds stress model fails to reproduce the increase of anisotropy in the centerline of the channel after passing the contraction. In the contrary, the PITM simulation predicts fairly well this turbulent flow according to the experimental data, and especially, the “return to anisotropy” in the straight section of the channel downstream the contraction. This work shows that the PITM method used in conjunction with an analytical synthetic turbulence generation as inflow is well suited for simulating this flow, while allowing a drastic reduction of the computational resources.  相似文献   

2.
基于组合神经网络的雷诺平均湍流模型多次修正方法   总被引:1,自引:0,他引:1  
求解雷诺平均(Reynolds-averaged Navier-Stokes, RANS)方程依然是工程应用中有效且实用的方法, 但对雷诺应力建模的不确定性会导致该方法的预测精度具有很大差异. 随着人工智能的发展, 湍流闭合模型结合机器学习元素的数据驱动方法被认为是提高RANS模型预测性能的有效手段, 然而这种数据驱动方法的稳定性和预测精度仍有待进一步提高. 本文通过构建一个全连接神经网络对RANS方程中的涡黏系数进行预测以实现雷诺应力的隐式求解,该神经网络记作涡黏系数神经网络(eddy viscosity neural network, EVNN). 此外, 也使用张量基神经网络(tensor basis neural network, TBNN)预测未封闭量与解析量之间的高阶涡黏关系, 并利用基张量保证伽利略不变性. 最后, 采用多次修正的策略实现修正模型对流场预测的精度闭环. 上述方法使用大涡模拟(large eddy simulation, LES)方法产生的高保真数据, 以及RANS模拟获得的基线数据对由EVNN和TBNN组合的神经网络进行训练, 然后用训练好的模型预测新的RANS模拟的流场. 通过与高保真LES结果进行对比, 结果表明, 相比于原始RANS模型, 修正模型对后验速度场、下壁面平均压力系数和摩擦力系数的预测精度均有较大提升. 可以发现对雷诺应力线性部分的隐式处理可以增强数值求解的稳定性, 对雷诺应力非线性部分的修正可以提升模型对流场各向异性特征预测的性能, 并且多次修正后的模型表现出更高的预测精度. 因此, 该算法在数据驱动湍流建模和工程应用中具有很大的应用潜力.   相似文献   

3.
The procedure of incorporating the detached eddy method and a model of laminar-turbulent transition into the SSG/LRR-ω turbulence model is presented. The approach proposed can be regarded as the generalization of the existing models intended to perform calculations with the SST turbulence model to the case of their use with the SSG/LRR-ω model. The advantage of the approach developed over the RANS turbulence models based on the Boussinesq hypothesis is demonstrated with respect to the problems of flow past an airfoil and cold jet outflow.  相似文献   

4.
In the current work, we present the development and application of an embedded large-eddy simulation (LES) - Reynolds-averaged Navier Stokes (RANS) solver. The novelty of the present work lies in fully embedding the LES region inside a global RANS region through an explicit coupling at the arbitrary mesh interfaces, exchanging flow and turbulence quantities. In particular, a digital filter method (DFM) extracting mean flow, turbulent kinetic energy and Reynolds stress profiles from the RANS region is used to provide meaningful turbulent fluctuations to the LES region. The framework is developed in the open-source computational fluid dynamics software OpenFOAM. The embedding approach is developed and validated by simulating a spatially developing turbulent channel flow. Thereafter, flow over a surface mounted spanwise-periodic vertical fence is simulated to demonstrate the importance of the DFM and the effect of the location of the RANS-LES interface. Mean and second-order statistics are compared with direct numerical simulation (DNS) data from the literature. Results indicate that feeding synthetic turbulence at the LES interface is essential to achieve good agreement for the mean flow quantities. However, in order to obtain a good match for the Reynolds stresses, the LES interface needs to be placed sufficiently far upstream, which in the present case was six spoiler heights before the fence. Further, a realistic spoiler configuration with finite-width in the spanwise direction and inclined at 30 degrees was simulated using the embedding approach. As opposed to the vertical fence case this is a genuinely (statistically) three-dimensional case and a very good match with mean and second-order statistics was obtained with the experimental data. Finally, in order to test the present solver for high sub-sonic speed flows the flow over an open cavity was simulated. A good match with reference data is obtained for mean and turbulence profile comparisons. Tones in the pressure spectra were predicted reasonably well and an overall sound pressure level with a maximum deviation of 2.6 d B was obtained with the present solver when compared with the experimental data.  相似文献   

5.
The objective of this work is to verify the capabilities of a hybrid k-ω RANS/LES model for simulation of the unsteady three-dimensional flow in a ribbed duct subjected to system rotation. The Reynolds number is 15,000 and the rotation number is 0.3, both based on hydraulic diameter and bulk velocity. A correction term for system rotation is introduced into the originating k-ω RANS model. Simulation results in the mid-span section are compared with experimental data by Coletti et al. (Exp. Fluids 52:1043–1061, 2012). The comparison is complemented by analysis of the flow features in cross-sections. It is demonstrated that the hybrid k-ω RANS/LES model produces an accurate simulation of the rotating ribbed duct flow. Results are compared with those by the originating time-accurate k-ω RANS model. The k-ω RANS model is not accurate concerning secondary features in the longitudinal mean flow recirculation patterns and the secondary flow in cross-sections, but it reproduces quite well the time-averaged longitudinal flow.  相似文献   

6.
To unravel the widespread perception that the RANS (Reynolds-averaged Navier-Stokes) concept is unreliable in predicting the dynamics of separated flows, we assessed the performance of two RANS closure levels, the linear eddy-viscosity (LEVM) and the second-moment (Reynolds stress, RSM) approaches in a massively separated generic flow over a bluff body. Considered is the canonical, zero-turbulence, cross-flow over an infinite cylinder with reference to our LES and the available DNS and experiments at two Reynolds numbers, Re = 3.9 × 103 and 1.4 × 105, both within the sub-critical regime with laminar separation. Both models capture successfully the vortex shedding frequency, but the low frequency modulations are detected only by the RSM. At high Reynolds numbers the RSM is markedly superior to the LEVM showing very good agreement with the LES and experimental data. The RSM, accounting naturally for the stress anisotropy and phase lag between the stress and strain eigenvectors, is especially successful in reproducing the growth rate of the turbulent kinetic energy in the initial shear layer which proved to be crucial for accurate prediction of the separation-induced transition. A scrutiny of the unsteady RANS (URANS) stress terms based on the conditional phase-averaged LES data shows a remarkable similarity of the normalized coherent and stochastic (modeled) stress components for the two Reynolds numbers considered. The mixed (cross) correlations, while non-negligible at the low Re number, diminish fast relative to the stochastic ones with increasing Reynolds number and, in the whole, are not significant to undermine the URANS concept and its applicability to high Re flows of industrial relevance.  相似文献   

7.
In this paper, the numerical dissipation properties of the Spectral Difference (SD) method are studied in the context of vortex dominated flows and wall-bounded turbulence, using uniform and distorted grids. First, the validity of using the SD numerical dissipation as the only source of subgrid dissipation (the so-called Implicit-LES approach) is assessed on regular grids using various polynomial degrees (namely, p = 3, p = 4, p = 5) for the Taylor-Green vortex flow configuration at R e = 5 000. It is shown that the levels of numerical dissipation greatly depend on the order of accuracy chosen and, in turn, lead to an incorrect estimation of the viscous dissipation levels. The influence of grid distortion on the numerical dissipation is then assessed in the context of finite Reynolds number freely-decaying and wall-bounded turbulence. Tests involving different amplitudes of distortion show that highly skewed grids lead to the presence of small-scale, noisy structures, emphasizing the need of explicit subgrid modeling or regularization procedures when considering coarse, high-order SD computations on unstructured grids. Under-resolved, high-order computations of the turbulent channel flow at R e τ = 1000 using highly-skewed grids are considered as well and present a qualitatively similar agreement to results obtained on a regular grid.  相似文献   

8.
Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.  相似文献   

9.
10.
Simulations have been carried out to predict the receptivity and growth of crossflow vortices created by Discrete Roughness Elements (DREs) The final transition to turbulence has also been examined, including the effect of DRE spacing and freestream turbulence. Measurements by Hunt and Saric (2011) of perturbation mode shape at various locations were used to validate the code in particular for the receptivity region. The WALE sub-grid stress (SGS) model was adopted for application to transitional flows, since it allows the SGS viscosity to vanish in laminar regions and in the innermost region of the boundary layer when transition begins. Simulations were carried out for two spanwise wavelengths: λ= 12mm (critical) and λ= 6mm (control) and for roughness heights (k) from 12 μm to 42 μm. The base flow considered was an ASU (67)-0315 aerofoil with 45 0 sweep at -2.9 0 incidence and with onset flow at a chord-based Reynolds number Re c= 2.4x10 6. For λ= 12mm results showed, in accord with the experimental data, that the disturbance amplitude growth rate was linear for k = 12 μm and 24 μm, but the growth rate was decreased for k = 36 μm Receptivity to λ= 6mm roughness showed equally good agreement with experiments, indicating that this mode disappeared after a short distance to be replaced by a critical wavelength mode. Analysis of the development of modal disturbance amplitudes with downstream distance showed regions of linear, non-linear, saturation, and secondary instability behaviour. Examination of breakdown to turbulence revealed two possible routes: the first was 2D-like transition (probably Tollmien-Schlichting waves even in the presence of crossflow vortices) when transition occurred beyond the pressure minimum; the second was a classical crossflow vortex secondary instability, leading to the formation of a turbulent wedge.  相似文献   

11.
RANS simulations may not provide accurate results for all flow conditions. The interaction between a shock wave and a turbulent boundary layer is an example which may still be difficult to simulate accurately. Beside the inability to reproduce physical phenomena such as shock unsteadiness, the argument is put forward that the conventional numerical schemes, based on the Navier-Stokes equations, may be unable to generate a physically consistent turbulent stress tensor in the presence of large unresolved scales of motion. A large ratio between unresolved and resolved scales of motion, a sort of Knudsen number based on turbulent fluctuations, might introduce inaccuracies for which the turbulence model is not accountable. In order to improve the accuracy of RANS simulations, researchers have suggested various ad-hoc modifications to standard turbulence models which limit eddy viscosity or the turbulent stress tensor in the presence of strong gradients. Gas-kinetic schemes might be able to improve RANS predictions in shocklayers by removing or limiting the errors caused by the large scales ratio. These schemes are a class of their own; in the framework of a finite-volume or finite-elements discretizations, they model the numerical fluxes on the basis of the Boltzmann equation instead of the Navier-Stokes equations as is conventionally done. In practical terms, these schemes provide a higher accuracy and, more importantly, an in-built “multiscalar” mechanism, i.e. the ability to adjust to the size of unresolved scales of motion. This property makes them suitable for shock-capturing and rarefied flow. Gas-kinetic scheme may be coupled to a conventional RANS turbulence model; it is shown that the turbulent stress tensor is naturally adjusted as a function of the unresolved-to-resolved scales ratios and achieves a higher physical consistency than conventional schemes. The simulations shown - well-known benchmark cases with strong shock-boundary layer interactions - have been obtained with a standard two-equation turbulence model (k- ω). It is shown that the gas-kinetic scheme provides good quality predictions, where conventional schemes with the same turbulence model are known to fail.  相似文献   

12.
A comprehensive experimental investigation of the effect of the Reynolds number on the degeneration law for turbulence generated by biplanar and wicker grids is carried out over a wide range of the grid geometry parameters and the flow velocity. It is established that an increase in the flow velocity leads to an increase in the turbulence intensity at a given distance from the biplanar grid and a decrease in the turbulence decay rate downstream of the grid. An empirical relation between the turbulence intensity behind the grid, on the one hand, and the relative distance x/M from the grid and the Reynolds number based on the grid rod diameter and the flow velocity at the grid mesh center, on the other hand, is proposed. For the same relative distance x/M from the grid the intensity of wicker-grid turbulence is higher than in the case of the flow past a biplanar grid.  相似文献   

13.
A lean premixed propane/air bluff-body stabilized flame (Volvo test rig) is calculated using the Scale-Adaptive Simulation turbulence model (SAS) and Large-Eddy simulations (LES) as well as the conventional Reynolds-averaged approach (RAS). RAS and SAS are closed by the standard k-?? and the k-ω Shear Stress Transport (SST) turbulence models, respectively. The conventional Smagorinsky and the k-equation sub-grid scales models are used for the LES closure. Effects of the sub-grid scalar flux modeling using the classical gradient hypothesis and Clark’s tensor diffusivity closures both for the inert and reactive LES flows are discussed. The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction. It assumes that molecular mixing and the subsequent combustion occur in the ’fine structures’ (smaller dissipative eddies, which are close to the Kolmogorov scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the ’fine structures’ are evaluated using different turbulence models (RAS, SAS and LES). The finite-rate chemical kinetics is taken into account by treating the ’fine structures’ as constant pressure and adiabatic homogeneous reactors, calculated as a system of ordinary-differential equations (ODEs) described by a Perfectly Stirred Reactor (PSR) concept. Several further enhancements to model the PSRs are proposed, including a new Livermore Solver (LSODA) for integrating stiff ODEs and a new correction to calculate the PSR time scales. All models have been implemented as a stand-alone application \(\text {edcPisoFoam}\) based on the OpenFOAM technology. Additionally, several RAS calculations were performed using the Turbulence Flame Speed Closure model in Ansys Fluent to assess effects of the heat losses by modeling the conjugate heat transfer between the bluff-body and the reactive flow. Effects of the turbulence Schmidt number on RAS results are discussed as well. Numerical results are compared with available experimental data. Reasonable consistency between experimental data and numerical results provided by RAS, SAS and LES is observed. In general, there is satisfactory agreement between present LES-EDC simulations, numerical results by other authors and measurements without any major modification to the EDC closure constants, which gives a quite reasonable indication on the adequacy and accuracy of the method and its further application for turbulent premixed combustion simulations.  相似文献   

14.
Wall-bounded turbulent flows over surfaces with spanwise heterogeneous surface roughness – that is, spanwise-adjacent patches of relatively high and low roughness – exhibit mean flow phenomena entirely different to what would otherwise exist in the absence of spanwise heterogeneity. In the outer layer, mean counter-rotating rolls occupy the depth of the flow, and are positioned such that “upwelling” and “downwelling” occurs above the low and high roughness, respectively. It has been comprehensively shown that these secondary flows are Prandtl’s secondary flow of the second kind (Anderson et al., J. Fluid Mech. 768, 316–347 2015). This behaviour indicates that spanwise spacing, s y , between adjacent patches of high and low roughness is, itself, a problem parameter; in this study, we have systematically assessed how s y affects turbulence structure in high Reynolds number channel flows via two-point correlations. “High roughness” is imposed with streamwise-aligned pyramid elements with height, h, selected to be ≈ 5% of the channel half height, H. For \(s_{y}/H \gtrsim 1\), we find that the aforementioned domain-scale mean circulations exist and the surface may be regarded as a topography. For s y /H ? 0.2, turbulence statistics show characteristics very similar to a homogeneous roughness and thus the surface may be regarded as a roughness. For 0.2 ? s y /H ? 2, the spatial extent of the counter-rotating rolls is controlled by proximity to adjacent rows, and we define such surfaces as being intermediate. We refer to such surfaces as intermediate state.  相似文献   

15.
Based on the finite volume method, the flow past a two-dimensional circular cylinder at a critical Reynolds number (Re = 8.5 × 105) was simulated using the Navier-Stokes equations and the γ-Reθ transition model coupled with the SST k ? ω turbulence model (hereinafter abbreviated as γ-Reθ model). Considering the effect of free-stream turbulence intensity decay, the SST k ? ω turbulence model was modified according to the ambient source term method proposed by Spalart and Rumsey, and then the modified SST k ? ω turbulence model is coupled with the γ-Reθ transition model (hereinafter abbreviated as γ-Reθ-SR model). The flow past a circular cylinder at different inlet turbulence intensities were simulated by the γ-Reθ-SR model. At last, the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers were each simulated by the γ-Reθ-SR model, and the three flow states were analyzed. It was found that compared with the SST k ? ω turbulence model, the γ-Reθ model could simulate the transition of laminar to turbulent, resulting in better consistency with experimental result. Compared with the γ-Reθ model, for relatively high inlet turbulence intensities, the γ-Reθ-SR model could better simulate the flow past a circular cylinder; however the improvement almost diminished for relatively low inlet turbulence intensities The γ-Reθ-SR model could well simulate the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers.  相似文献   

16.
赵耀民  徐晓伟 《力学学报》2021,53(10):2640-2655
计算流体动力学是湍流研究的重要手段, 其中雷诺平均模拟在航空航天等实际工程中得到了广泛应用. 雷诺平均模拟的结果很大程度上依赖于湍流模型的预测精度, 而实际工程应用中常用的模型往往精度有限. 近年来, 数据驱动的湍流建模方法得到越来越多的关注. 本文介绍了基于基因表达式编程 (gene-expression programming, GEP) 方法的湍流建模相关进展. 本文首先讨论基因表达式编程应用于湍流建模的具体方法, 包括基本算法、显式代数应力模型和湍流传热两种建模框架、模型测试方法以及损失函数设置等. 在此基础上, 基因表达式编程方法被应用于涡轮叶栅尾流混合、竖直平板间自然对流、三维横向流中的射流等问题. 结果表明, GEP可以有效提升常用模型对于尾流混合损失、壁面热通量等关键参数的预测精度. 基因表达式编程方法可以显式给出模型方程, 因此模型具有可解释性强等特点. 基于双向耦合方法得到的模型还被证明具有较好的后验测试精度和鲁棒性. 基因表达式编程方法还被初步应用于大涡模拟亚格子应力和边界层转捩等问题的建模, 在不同湍流建模领域表现出很大的潜力.   相似文献   

17.
The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec =?60,000, an angle of attack α =?4° and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0%TI ≤?11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.  相似文献   

18.
This paper presents a numerical simulation of the flow resulting from transverse jet injection into a supersonic flow through a slot nozzle at different pressures in the injected jet and the crossflow. Calculations on grids with different resolutions use the Spalart–Allmaras turbulence model, the kε model, the kω model, and the SST model. Based on a comparison of the calculated and experimental data on the wall pressure distribution, the length of the recirculation area, and the depth of jet penetration into the supersonic flow, conclusions are made on the accuracy of the calculation results for the different turbulence models and the applicability of these models to similar problems.  相似文献   

19.
基于Pope修正的有效黏度假设,张量基神经网络(tensor based neural network,TBNN)构建了从雷诺平均方程湍流模型(RANS)的平均应变率张量和平均旋转率张量到高精度数值解的雷诺应力各向异性张量的映射.将高精度数值解用于TBNN的训练,从而使TBNN根据RANS求解的湍动能、湍流耗散率和速度...  相似文献   

20.
Particle fluctuation and gas turbulence in dense gas-particle flows are less studied due to complexity of the phenomena. In the present study, simulations of gas turbulent flows passing over a single particle are carried out first by using RANS modeling with a Reynolds stress equation turbulence model and sufficiently fine grids, and then by using LES. The turbulence enhancement by the particle wake effect is studied under various particle sizes and relative gas velocities, and the turbulence enhancement is found proportional to the particle diameter and the square of velocity. Based on the above results, a turbulence enhancement model for the particle-wake effect is proposed and is incorporated as a sub-model into a comprehensive two-phase flow model, which is then used to simulate dilute gas-particle flows in a horizontal channel. The simulation results show that the predicted gas turbulence by using the present model accounting for the particle wake effect is obviously in better agreement with the experimental results than the prediction given by the model not accounting for the wake effect. Finally, the proposed model is incorporated into another two-phase flow model to simulate dense gasparticle flows in a downer. The results show that the particle wake effect not only enhances the gas turbulence, but also amplifies the particle fluctuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号