首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper fractional Hindmarsh Rose (HR) neuron, which mimics several behaviors of a real biological neuron is implemented on field programmable gate array (FPGA). The results show several differences in the dynamic characteristics of integer and fractional order Hindmarsh Rose neuron models. The integer order model shows only one type of firing characteristics when the parameters of model remains same. The fractional order model depicts several dynamical behaviors even for the same parameters as the order of the fractional operator is varied. The firing frequency increases when the order of the fractional operator decreases. The fractional order is therefore key in determining the firing characteristics of biological neurons. To implement this neuron model first the digital realization of different fractional operator approximations are obtained, then the fractional integrator is used to obtain the low power and low cost hardware realization of fractional HR neuron. The fractional neuron model has been implemented on a low voltage and low power circuit and then compared with its integer counter part. The hardware is used to demonstrate the different dynamical behaviors of fractional HR neuron for different type of approximations obtained for fractional operator in this paper. A coupled network of fractional order HR neurons is also implemented. The results also show that synchronization between neurons increases as long as coupling factor keeps on increasing.  相似文献   

2.
In the present paper, we investigate the unsteady flow of a viscoelastic fluid between two parallel plates which is generated by the impulsively accelerated motion of the bottom plate. Based on the result of (Jaishankar and McKinley, 2014), the fractional K-BKZ constitutive equation is obtained from the fractional Maxwell model. Using respectively the fractional Maxwell model and fractional K-BKZ model, the unidirectional flows between two plates are simulated and compared. The velocity field and shear stress of the flows are calculated by developing efficient finite difference schemes. The results show that the fluid with the fractional Maxwell model gradually loses the viscoelasticity, but the fluid with the fractional K-BKZ model continues to preserve the viscoelasticity. The dependence of the flow velocity on various parameters of the fractional K-BKZ model is analyzed graphically.  相似文献   

3.
The simplest and probably the most familiar model of statistical processes in the physical sciences is the random walk. This simple model has been applied to all manner of phenomena, ranging from DNA sequences to the firing of neurons. Herein we extend the random walk model beyond that of mimicking simple statistics to include long‐time memory in the dynamics of complex phenomena. We show that complexity can give rise to fractional‐difference stochastic processes whose continuum limit is a fractional Langevin equation, that is, a fractional differential equation driven by random fluctuations. Furthermore, the index of the inverse power‐law spectrum in many complex processes can be related to the fractional derivative index in the fractional Langevin equation. This fractional stochastic model suggests that a scaling process guides the dynamics of many complex phenomena. The alternative to the fractional Langevin equation is a fractional diffusion equation describing the evolution of the probability density for certain kinds of anomalous diffusion. © 2006 Wiley Periodicals, Inc. Complexity 11: 33–43, 2006  相似文献   

4.
In this study, the non-Darcian flow and solute transport in porous media are modeled with a revised Caputo derivative called the Caputo–Fabrizio fractional derivative. The fractional Swartzendruber model is proposed for the non-Darcian flow in porous media. Furthermore, the normal diffusion equation is converted into a fractional diffusion equation in order to describe the diffusive transport in porous media. The proposed Caputo–Fabrizio fractional derivative models are addressed analytically by applying the Laplace transform method. Sensitivity analyses were performed for the proposed models according to the fractional derivative order. The fractional Swartzendruber model was validated based on experimental data for water flows in soil–rock mixtures. In addition , the fractional diffusion model was illustrated by fitting experimental data obtained for fluid flows and chloride transport in porous media. Both of the proposed fractional derivative models were highly consistent with the experimental results.  相似文献   

5.
In this paper, a fractional temporal SEIR measles model is considered. The model consists of four coupled time fractional ordinary differential equations. The time-fractional derivative is defined in the Caputo sense. Firstly, we solve this model by solving an approximate model that linearizes the four time fractional ordinary differential equations (TFODE) at each time step. Secondly, we derive an analytical solution of the single TFODE. Then, we can obtain analytical solutions of the four coupled TFODE at each time step, respectively. Thirdly, a computationally effective fractional Predictor-Corrector method (FPCM) is proposed for simulating the single TFODE. And the error analysis for the fractional predictor-corrector method is also given. It can be shown that the fractional model provides an interesting technique to describe measles spreading dynamics. We conclude that the analytical and Predictor-Corrector schemes derived are easy to implement and can be extended to other fractional models. Fourthly, for demonstrating the accuracy of analytical solution for fractional decoupled measles model, we applied GMMP Scheme (Gorenflo-Mainardi-Moretti-Paradisi) to the original fractional equations. The comparison of the numerical simulations indicates that the solution of the decoupled and linearized system is close enough to the solution of the original system. And it also indicates that the linearizing technique is correct and effective.  相似文献   

6.
This article studies the chaotic and complex behavior in a fractional‐order biomathematical model of a muscular blood vessel (MBV). It is shown that the fractional‐order MBV (FOMBV) model exhibits very complex and rich dynamics such as chaos. We show that the corresponding maximal Lyapunov exponent of the FOMBV system is positive which implies the existence of chaos. Strange attractors of the FOMBV model are depicted to validate the chaotic behavior of the system. We change the fractional order of the model and investigate the dynamics of the system. To suppress the chaotic behavior of the model, we propose a single input fractional finite‐time controller and prove its stability using the fractional Lyapunov theory. In addition, the effects of the model uncertainties and external disturbances are taken into account and a robust fractional finite‐time controller is constructed. The upper bound of the chaos suppression time is also given. Some computer simulations are presented to illustrate the findings of this article. © 2014 Wiley Periodicals, Inc. Complexity 20: 37–46, 2014  相似文献   

7.
广义二阶流体涡流速度的衰减和温度扩散   总被引:2,自引:1,他引:1  
将分数阶微积分运算引入到二阶流体的本构关系中,建立了带分数阶导数的广义二阶流体模型.研究了广义二阶流体涡流速度的衰减和温度扩散,利用分数阶导数的Laplace变换和广义Mittag-Leffler函数,得到了涡流速度场和温度场的精确解,分析了分数阶指数对涡流速度的衰减和温度扩散的影响.  相似文献   

8.
In this paper, we propose a nonlinear fractional order model in order to explain and understand the outbreaks of influenza A(H1N1). In the fractional model, the next state depends not only upon its current state but also upon all of its historical states. Thus, the fractional model is more general than the classical epidemic models. In order to deal with the fractional derivatives of the model, we rely on the Caputo operator and on the Grünwald–Letnikov method to numerically approximate the fractional derivatives. We conclude that the nonlinear fractional order epidemic model is well suited to provide numerical results that agree very well with real data of influenza A(H1N1) at the level population. In addition, the proposed model can provide useful information for the understanding, prediction, and control of the transmission of different epidemics worldwide. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The paper presents quasi-static analysis, classical and fractional dynamic analysis of a simply supported viscoelastic beam subjected to uniformly distributed load, where the Riemann–Liouville fractional derivative is of the order ν ∈ (0, 1). A comparative study of the results obtained for a classical and fractional Zener model using the techniques of Laplace transform, Bessel functions theory and binomial series is achieved. The graphic representations show how the existence of fractional derivative in the selected rheological model influences the dynamic response of the structure. This paper provides a theoretical basis for researchers who want to choose a mathematical model that will precisely fit with a particular experimental model.  相似文献   

10.
Traditional integer‐order partial differential equation based image denoising approach can easily lead edge and complex texture detail blur, thus its denoising effect for texture image is always not well. To solve the problem, we propose to implement a fractional partial differential equation (FPDE) based denoising model for texture image by applying a novel mathematical method—fractional calculus to image processing from the view of system evolution. Previous studies show that fractional calculus has some unique properties that it can nonlinearly enhance complex texture detail in digital image processing, which is obvious different with integer‐order differential calculus. The goal of the modeling is to overcome the problems of the existed denoising approaches by utilizing the aforementioned properties of fractional differential calculus. Using classic definition and property of fractional differential calculus, we extend integer‐order steepest descent approach to fractional field to implement fractional steepest descent approach. Then, based on the earlier fractional formulas, a FPDE based multiscale denoising model for texture image is proposed and further analyze optimal parameters value for FPDE based denoising model. The experimental results prove that the ability for preserving high‐frequency edge and complex texture information of the proposed fractional denoising model are obviously superior to traditional integral based algorithms, as for texture detail rich images. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Since population behaviors possess the characteristic of history memory, we, in this paper, introduce time fractional‐order derivatives into a diffusive Gause‐type predator‐prey model, which is time fractional‐order reaction‐diffusion equations and a generalized form of its corresponding first‐derivative model. For this kind of model, we prove the existence and uniqueness of a global positive solution by using the theory of evolution equations and the comparison principle of time fractional‐order partial differential equations. Besides, we obtain the stability and Hopf bifurcation of the Gause‐type predator‐prey model in the forms of the time fractional‐order ordinary equations and of the time fractional‐order reaction‐diffusion equations, respectively. Our results show that the stable region of the parameters in these 2 models can be enlarged by the time fractional‐order derivatives. Some numerical simulations are made to verify our results.  相似文献   

12.
Fractional order accumulation is a novel and popular tool which is efficient to improve accuracy of the grey models. However, most existing grey models with fractional order accumulation are all developed on the conventional methodology of grey models, which may be inaccurate in the applications. In this paper an existing fractional multivariate grey model with convolution integral is proved to be a biased model, and then a novel fractional discrete multivariate grey model based on discrete modelling technique is proposed, which is proved to be an unbiased model with mathematical analysis and stochastic testing. An algorithm based on the Grey Wolf Optimizer is introduced to optimize the fractional order of the proposed model. Four real world case studies with updated data sets are executed to assess the effectiveness of the proposed model in comparison with nine existing multivariate grey models. The results show that the Grey Wolf Optimizer-based algorithm is very efficient to optimize the fractional order of the proposed model, and the proposed model outperforms other nine models in the all the real world case studies.  相似文献   

13.
Is there a relation between fractional calculus and fractal geometry? Can a fractional order system be represented by a causal dynamical model? These are the questions recently debated in the scientific community. The author intends to answer these questions. In the first part of the paper, some recently suggested models are reviewed and no convincing evidence is found for any dynamic model of a fractional order system having been built with the help of fractals. Linear filters with lumped constant parameters have a very limited use as approximations of fractional order systems. The model suggested in the paper is a state-space representation with parameters as functions of the independent variable. Regularization of fractional differentiation is considered and asymptotic error estimates, as well as simulation results, are presented.  相似文献   

14.
This work presents a new model of the fractional Black‐Scholes equation by using the right fractional derivatives to model the terminal value problem. Through nondimensionalization and variable replacements, we convert the terminal value problem into an initial value problem for a fractional convection diffusion equation. Then the problem is solved by using the Fourier‐Laplace transform. The fundamental solutions of the derived initial value problem are given and simulated and display a slow anomalous diffusion in the fractional case.  相似文献   

15.
给出了分数阶灰色累减生成算子的详细推导过程,并证明了分数阶灰色累减生成算子的不动点定理、信息优先原理、交换律与指数律,为分数阶灰色预测模型提供了理论基础.算例验证了分数阶灰色累减生成算子的特征,在灰色预测模型GM(1,1)中的应用证明了分数阶灰色累减生成算子的有效性.  相似文献   

16.
In this study, we consider a fractional prey–predator scavenger model as well as harvesting by a predator and scavenger. We prove the positivity and boundedness of the solutions in this system. The model undergoes a Hopf bifurcation around one of the existing equilibria where the conditions are met for the occurrence of a Hopf bifurcation. The results show that chaos disappears in this biological model. We conclude that the fractional system is more stable compared with the classical case and the stability domain can be extended under fractional order. In addition, a suitable amount of prey harvesting and a fractional order derivative can control the chaotic dynamics and stabilize them. We also present an extended numerical simulation to validate the results.  相似文献   

17.
A new model of fractional telegraph point reactor kinetics FTPRK is introduced to approximate the time dependent Boltzmann transport equation considering new terms that contain time derivative of the reactivity and fractional integral of the neutron density. Caputo fractional derivatives and fractional Leibniz rule are used for such derivation. Cattaneoequation is applied to overcome the flaw of infinite neutron velocity and to describe the anomalous transport. Effect of the new term on the neutron behaviour is discussed. The new model is applied to both TRIGA reactor and to commercial pressured water reactor of a Three Mile Island type reactor, TMI-type PWR. Results for step, ramp and sinusoidal excess reactivities with thermal hydraulic feedback are presented and discussed for different values of anomalous sub-diffusion exponent, the fractional order, 0 < µ ≤ 1. To maintain the reactor safe at start-up after insertion of step reactivity and based on the concept of prompt jump approximation, the FTPRK model is simplified and solved analytically by Mittag–Liffler function. Physical interpretations of the fractional order µ and relaxation time τ and their effects on the behaviour of the neutron population are discussed. Also, the effect of a small perturbation in the geometric buckling on the neutron behaviour is discussed for finite reactor core. The new model is solved numerically using the fractional order multi-step differential transform method MDTM. The MDTM constitutes an easy algorithm based on Taylor's formula and Caputo fractional derivative. Two theorems with their proofs are introduced to solve the fractional system. Two major disadvantages of the method about the choice of the fractional order values and the step size length are addressed. We present a procedure which enables us to solve the system with appropriate values of fraction orders.  相似文献   

18.
This paper develops a numerical model to identify constitutive parameters in the fractional viscoelastic field. An explicit semi-analytical numerical model and a finite difference (FD) method based numerical model are derived for solving the direct homogenous and regionally inhomogeneous fractional viscoelastic problems, respectively. A continuous ant colony optimization (ACO) algorithm is employed to solve the inverse problem of identification. The feasibility of the proposed approach is illustrated via the numerical verification of a two-dimensional identification problem formulated by the fractional Kelvin–Voigt model, and the noisy data and regional inhomogeneity etc. are taken into account.  相似文献   

19.
A model of complex-valued fractional Brownian motion has been built up recently as the limit of a random walk in the complex plane, but this model involves radial steps only. It is shown that, by using non-radial steps, this model can be easily extended to define a fractional Brownian motion with complex-valued variance. The relations between complex-valued Brownian motion and the heat equation of order n is clarified and mainly one obtains the general expression of the probability density functions for these processes. One shows that the maximum entropy principle (MPE) provides the probability density of the complex-valued fractional Brownian motion, exactly like for the standard Brownian motion. And lastly, one shows that the heat equation of order 2n (which is the Fokker–Planck equation (FPE) of the complex-valued Brownian motion) has a solution which is similar to that of the FPE of fractional order introduced before by the author, therefore, to some extent, an identification between the complex-valued model via random walk in the complex plane and the model involving a derivative of fractional order.  相似文献   

20.
To explore the impact of pest‐control strategy through a fractional derivative, we consider three predator‐prey systems by simple modification of Rosenzweig‐MacArthur model. First, we consider fractional‐order Rosenzweig‐MacArthur model. Allee threshold phenomena into pest population is considered for the second case. Finally, we consider additional food to the predator and harvesting in prey population. The main objective of the present investigation is to observe which model is most suitable for the pest control. To achieve this goal, we perform the local stability analysis of the equilibrium points and observe the basic dynamical properties of all the systems. We observe fractional‐order system has the ability to stabilize Rosenzweig‐MacArthur model with low pest density from oscillatory state. In the numerical simulations, we focus on the bistable regions of the second and third model, and we also observe the effect of the fractional order α throughout the stability region of the system. For the third model, we observe a saddle‐node bifurcation due to the additional food and Allee effect to the pest densities. Also, we numerically plot two parameter bifurcation diagram with respect to the harvesting parameter and fractional order of the system. We finally conclude that fractional‐order Rosenzweig‐MacArthur model and the modified Rosenzweig‐MacArthur model with additional food for the predator and harvested pest population are more suitable models for the pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号