首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper outlines why the spectrum of maximal ideals Spec ? A of a countable-dimensional differential ?-algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any ?-homomorphism ψ M: A → ? (MSpec ? A) and any aA the Taylor series \(\widetilde {{\psi _M}}{\left( a \right)^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} \frac{{{z^m}}}{{m!}}\) has nonzero radius of convergence depending on the element aA.  相似文献   

2.
Let \(M = {{\widetilde M} \mathord{\left/ {\vphantom {{\widetilde M} \Gamma }} \right. \kern-\nulldelimiterspace} \Gamma }\) be a Kähler manifold, where Γ ~ π1(M) and \(\widetilde M\) is the universal Kähler cover. Let (L, h) → M be a positive hermitian holomorphic line bundle. We first prove that the L2 Szeg? projector \({\widetilde \Pi _N}\) for L2-holomorphic sections on the lifted bundle \({\widetilde L^N}\) is related to the Szeg? projector for H0(M, LN) by \({\widehat \Pi _N}\left( {x,y} \right) = \sum\nolimits_{\gamma \in \Gamma } {{{\widetilde {\widehat \Pi }}_N}} \left( {\gamma \cdot x,y} \right)\). We then apply this result to give a simple proof of Napier’s theorem on the holomorphic convexity of \(\widetilde M\) with respect to \({\widetilde L^N}\) and to surjectivity of Poincaré series.  相似文献   

3.
Let x: M n?1 → R n be an umbilical free hypersurface with non-zero principal curvatures. Two basic invariants of M under the Laguerre transformation group of R n are Laguerre form C and Laguerre tensor L. In this paper, n > 3) complete hypersurface with vanishing Laguerre form and with constant Laguerre scalar curvature R in R n , denote the trace-free Laguerre tensor by ?\(\widetilde L = L - \frac{1}{{n - 1}}tr\left( L \right)\) · Id. If \(\widetilde L = L - \frac{1}{{n - 1}}tr\left( L \right)\), then M is Laguerre equivalent to a Laguerre isotropic hypersurface; and if \({\sup _M}\left\| {\widetilde L} \right\| = \frac{{\sqrt {\left( {n - 1} \right)\left( {n - 2} \right)} R}}{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}},\), M is Laguerre equivalent to the hypersurface ?x: H 1 × S n?2 → R n .  相似文献   

4.
Direct, semidirect and Zappa–Szép products provide tools to decompose algebraic structures, with each being a natural generalisation of its predecessor. In this paper we examine Zappa–Szép products of monoids and semigroups and investigate generalised Greens relations \({\mathcal R}^{*},\, {\mathcal L}^{*},\, \widetilde{\mathcal {R}}_E\) and \(\widetilde{\mathcal {L}}_E\) for these Zappa–Szép products. We consider a left restriction semigroup S with semilattice of projections E and define left and right actions of S on E and E on S, respectively, to form the Zappa–Szép product \(E \bowtie S\). We further investigate properties of \(E \bowtie S\) and show that S is a retract of \(E\bowtie S\). We also find a subset T of \(E \bowtie S\) which is left restriction.  相似文献   

5.
Let \(A=U|A|\) be the polar decomposition of A on a complex Hilbert space \({\mathscr {H}}\) and \(0<s,t\). Then \({\widetilde{A}}_{s, t}=|A|^sU|A|^t\) and \({\widetilde{A}}_{s, t}^{(*)}=|A^*|^sU|A^*|^t\) are called the generalized Aluthge transformation and generalized \(*\)-Aluthge transformation of A, respectively. A pair (AB) of operators is said to have the Fuglede–Putnam property (breifly, the FP-property) if \(AX=XB\) implies \(A^*X=XB^*\) for every operator X. We prove that if (AB) has the FP-property, then \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) and \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property for every \(s,t>0\) with \(s+t=1\). Also, we prove that \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) has the FP-property if and only if \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property, where AB are invertible and \( 0 < s, t \) with \( s + t =1\). Moreover, we prove that if \(0 < s, t\) and \({\widetilde{A}}_{s, t}\) is positive and invertible, then \(\left\| {\widetilde{A}}_{s, t}X-X{\widetilde{A}}_{s, t}\right\| \le \left\| A\right\| ^{2t}\left\| ({\widetilde{A}}_{s, t})^{-1}\right\| \left\| X\right\| \) for every operator X. Also, if \( 0 <s, t\) and X is positive, then \(\left\| |{\widetilde{A}}_{s, t}|^{2r} X-X|{\widetilde{A}}_{s, t}|^{2r}\right\| \le \frac{1}{2}\left\| |A|\right\| ^{2r}\left\| X\right\| \) for every \(r>0\).  相似文献   

6.
Let Ω be an open, simply connected, and bounded region in \(\mathbb {R}^{d}\), d ≥ 2, and assume its boundary ?Ω is smooth and homeomorphic to \(\mathbb {S}^{d-1}\). Consider solving an elliptic partial differential equation L u = f(?, u) over Ω with zero Dirichlet boundary value. The function f is a nonlinear function of the solution u. The problem is converted to an equivalent elliptic problem over the open unit ball \(\mathbb {B}^{d}\) in \(\mathbb {R}^{d}\), say \(\widetilde {L}\widetilde {u} =\widetilde {f}(\cdot ,\widetilde {u})\). Then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials \(\widetilde {u} _{n}\) of degree ≤ n that is convergent to \(\widetilde {u}\). The transformation from Ω to \(\mathbb {B}^{d}\) requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty } \left (\overline {\Omega }\right ) \) and assuming ?Ω is a C boundary, the convergence of \(\left \Vert \widetilde {u} -\widetilde {u}_{n}\right \Vert _{H^{1}}\) to zero is faster than any power of 1/n. The error analysis uses a reformulation of the boundary value problem as an integral equation, and then it uses tools from nonlinear integral equations to analyze the numerical method. Numerical examples illustrate experimentally an exponential rate of convergence. A generalization to ?Δu + γ u = f(u) with a zero Neumann boundary condition is also presented.  相似文献   

7.
8.
Let H8 be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra \(\widetilde{H_8 }\)based on H8, then we investigate the structure of the representation ring of \(\widetilde{H_8 }\). Finally, we prove that the automorphism group of \(r\left( {\widetilde{H_8 }} \right)\)is just isomorphic to D6, where D6 is the dihedral group with order 12.  相似文献   

9.
It is proved that if an entire function f: ? → ? satisfies an equation of the form α 1(x)β 1(y) + α 2(x)β 2(y) + α 3(x)β 3(y), x,y ∈ C, for some α j , β j : ? → ? and there exist no \({\widetilde \alpha _j}\) and ?\({\widetilde \beta _j}\) for which \(f\left( {x + y} \right)f\left( {x - y} \right) = {\overline \alpha _1}\left( x \right){\widetilde \beta _1}\left( y \right) + {\overline \alpha _2}\left( x \right){\widetilde \beta _2}\left( y \right)\), then f(z) = exp(Az 2 + Bz + C) ? σ Γ(z - z 1) ? σ Γ(z - z 2), where Γ is a lattice in ?; σ Γ is the Weierstrass sigma-function associated with Γ; A,B,C, z 1, z 2 ∈ ?; and \({z_1} - {z_2} \notin \left( {\frac{1}{2}\Gamma } \right)\backslash \Gamma \).  相似文献   

10.
Let \(X=\mathscr {J}(\widetilde{\mathscr {C}})\), the Jacobian of a genus 2 curve \(\widetilde{\mathscr {C}}\) over \({\mathbb {C}}\), and let Y be the associated Kummer surface. Consider an ample line bundle \(L=\mathscr {O}(m\widetilde{\mathscr {C}})\) on X for an even number m, and its descent to Y, say \(L'\). We show that any dominating component of \({\mathscr {W}}^1_{d}(|L'|)\) corresponds to \(\mu _{L'}\)-stable Lazarsfeld–Mukai bundles on Y. Further, for a smooth curve \(C\in |L|\) and a base-point free \(g^1_d\) on C, say (AV), we study the \(\mu _L\)-semistability of the rank-2 Lazarsfeld–Mukai bundle associated to (C, (AV)) on X. Under certain assumptions on C and the \(g^1_d\), we show that the above Lazarsfeld–Mukai bundles are \(\mu _L\)-semistable.  相似文献   

11.
For two subsets of natural numbers \( A,B \subset \mathbb{N} \), define the set of rational numbers \( \mathcal{M}\left( {A,B} \right) \) with the elements represented by m/n, where m and n are coprime, m is divisible by some aA, and n is divisible by some bB. Let I be some interval of positive real numbers and \( \mathcal{F}_x^I \) denote the set of rational numbers m/nI such that m and n are coprime and n ? x. The analogue to the Erdös–Davenport theorem about multiples is proved: under some constraints on I, the limits \( {{{\sum {\left\{ {\frac{1}{{mn}}:\frac{m}{n} \in \mathcal{F}_x^I \cap \mathcal{M}\left( {A,B} \right)} \right\}} }} \left/ {{\sum {\left\{ {\frac{1}{{mn}}:\frac{m}{n} \in \mathcal{F}_x^I} \right\}} }} \right.} \) exist for all subsets \( A,B \subset \mathbb{N} \) as x → ∞.  相似文献   

12.
An operator \({T\in{\mathcal{L}}({\mathcal{H}})}\) is said to be complex symmetric if there exists a conjugation C on \({{\mathcal H}}\) such that \({T= CT^{\ast}C}\). In this paper, we study the spectral radius algebras for complex symmetric operators. In particular, we prove that if A is a complex symmetric operator, then the spectral radius algebra \({{\mathcal B}_{A}}\) associated with A has a nontrivial invariant subspace under some conditions. Finally, we give some relations between \({P_{\tilde{A}}}\) and \({P_{\widetilde{A^{\ast}}}}\) (defined below) when A is complex symmetric.  相似文献   

13.
We study the well-posedness of the third-order degenerate differential equation \(\left( {{P_3}} \right):\alpha {\left( {Mu} \right)^{\prime \prime \prime }}\left( t \right) + {\left( {Mu} \right)^{\prime \prime }}\left( t \right) = \beta Au\left( t \right) + f\left( t \right)\), (t ∈ [0, 2p]) with periodic boundary conditions \(Mu\left( 0 \right) = Mu\left( {2\pi } \right),\;Mu'\left( 0 \right) = Mu'\left( {2\pi } \right),\;Mu''\left( 0 \right) = Mu''\left( {2\pi } \right)\), in periodic Lebesgue–Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel–Lizorkin spaces Fp,qs(T,X), where A, B and M are closed linear operators on a Banach space X satisfying D(A) \( \cap \)D(B) ? D(M) and α, β, γ ∈ R. Using known operator-valued Fourier multiplier theorems, we completely characterize the well-posedness of (P3) in the above three function spaces.  相似文献   

14.
Let f be a fixed holomorphic Hecke eigen cusp form of weight k for \( SL\left( {2,{\mathbb Z}} \right) \), and let \( {\mathcal U} = \left\{ {{u_j}:j \geqslant 1} \right\} \) be an orthonormal basis of Hecke–Maass cusp forms for \( SL\left( {2,{\mathbb Z}} \right) \). We prove an asymptotic formula for the twisted first moment of the Rankin–Selberg L-functions \( L\left( {s,f \otimes {u_j}} \right) \) at \( s = \frac{1}{2} \) as u j runs over \( {\mathcal U} \). It follows that f is uniquely determined by the central values of the family of Rankin–Selberg L-functions \( \left\{ {L\left( {s,f \otimes {u_j}} \right):{u_j} \in {\mathcal U}} \right\} \).  相似文献   

15.
In this paper, we show that for a positive operator A on a Hilbert \(C^*\)-module \( \mathscr {E} \), the range \( \mathscr {R}(A) \) of A is closed if and only if \( \mathscr {R}(A^\alpha ) \) is closed for all \(\alpha \in (0,1)\cup (1,+\,\infty )\), and this occurs if and only if \( \mathscr {R}(A)=\mathscr {R}(A^\alpha ) \) for all \(\alpha \in (0,1)\cup (1,+\,\infty )\). As an application, we prove that for an adjontable operator A if \(\mathscr {R}(A)\) is nonclosed, then \(\dim \left( \overline{\mathscr {R}(A)}/\mathscr {R}(A)\right) =+\,\infty \). Finally, we show that for an adjointable operator A if \( \overline{\mathscr {R}(A^*) } \) is orthogonally complemented in \( \mathscr {E} \), then under certain coditions there exists an idempotent C and a unique operator X such that \( XAX=X, AXA=CA, AX=C \) and \( XA=P_{A^*} \), where \( P_{A^*} \) is the orthogonal projection of \( \mathscr {E} \) onto \( \overline{\mathscr {R}(A^*)}\).  相似文献   

16.
Let E = E(a, b) be some Banach space of measurable functions on (a, b), I be the identity operator, and let \(\hat K\) be a Fredholm-type regular integral operator acting on E and \({\hat K_ \pm }\) be its triangular parts. We consider the representation \(I - \hat K = \left( {I - {{\hat K}_ - }} \right)\left( {I - \hat U} \right)\left( {I - {{\hat K}_ + }} \right)\), for some known classes of integral operators. In particular,we show that under certain conditions the operator \(\hat U\) is positive and its spectral radius satisfies the condition \(r\left( {\hat U} \right) < 1\). Also, we give some possible applications of the representation.  相似文献   

17.
The function \(\psi : = \sum\nolimits_{n \in \mathbb{Z}\backslash \left\{ 0 \right\}} {{{e^{\pi i\left( {tn^2 + 2xn} \right)} } \mathord{\left/ {\vphantom {{e^{\pi i\left( {tn^2 + 2xn} \right)} } {\left( {\pi in^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\pi in^2 } \right)}}} \), {t, x} ?2, is studied as a (generalized) solution of the Cauchy initial value problem for the Schrödinger equation. The real part of the restriction of ψ on the line x = 0, that is, the function \(R: = Re\psi \left| {_{x = 0} = \tfrac{2}{n}} \right.\sum\nolimits_{n \in \mathbb{N}} {\frac{{\sin \pi n^2 t}}{{n^2 }}} \), t ∈ ?, was suggested by B. Riemann as a plausible example of a continuous but nowhere differentiable function. The points are established on ?2 where the partial derivative \(\frac{{\partial \psi }}{{\partial t}}\) exists and equals ?1. These points constitute a countable set of open intervals parallel to the x-axis, with rational values of t. Thereby a natural extension of the well-known results of G.H. Hardy and J. Gerver is obtained (Gerver established that the derivative of the function R still does exist and equals ?1 at each rational point of the type \(t = \frac{a}{q}\) where both numbers a and q are odd). A basic role is played by a representation of the differences of the function ψ via Poisson’s summation formula and the oscillatory Fresnel integral. It is also proved that the number 3 4 is the sharp value of the Lipschitz-Hölder exponent of the function ψ in the variable t almost everywhere on ?2.  相似文献   

18.
It is well known that the potential q of the Sturm–Liouville operator Ly = ?y? + q(x)y on the finite interval [0, π] can be uniquely reconstructed from the spectrum \(\left\{ {{\lambda _k}} \right\}_1^\infty \) and the normalizing numbers \(\left\{ {{\alpha _k}} \right\}_1^\infty \) of the operator LD with the Dirichlet conditions. For an arbitrary real-valued potential q lying in the Sobolev space \(W_2^\theta \left[ {0,\pi } \right],\theta > - 1\), we construct a function qN providing a 2N-approximation to the potential on the basis of the finite spectral data set \(\left\{ {{\lambda _k}} \right\}_1^N \cup \left\{ {{\alpha _k}} \right\}_1^N\). The main result is that, for arbitrary τ in the interval ?1 ≤ τ < θ, the estimate \({\left\| {q - \left. {{q_N}} \right\|} \right._\tau } \leqslant C{N^{\tau - \theta }}\) is true, where \({\left\| {\left. \cdot \right\|} \right._\tau }\) is the norm on the Sobolev space \(W_2^\tau \). The constant C depends solely on \({\left\| {\left. q \right\|} \right._\theta }\).  相似文献   

19.
Let A and B be non-negative self-adjoint operators in a separable Hilbert space such that their form sum C is densely defined. It is shown that the Trotter product formula holds for imaginary parameter values in the L 2-norm, that is, one has
$ \lim_{n\to+\infty} \int\limits^T_{-T} \left\|\left(e^{-itA/n}e^{-itB/n} \right)^nh - e^{-itC}h\right\|^2dt = 0 $
for each element h of the Hilbert space and any T > 0. This result is extended to the class of holomorphic Kato functions, to which the exponential function belongs. Moreover, for a class of admissible functions: \({\phi(\cdot),\psi(\cdot):{\mathbb R}_+ \longrightarrow {\mathbb C}}\), where \({{\mathbb R}_+ := [0,\infty)}\), satisfying in addition \({{\Re{\rm e}}\,(\phi(y))\ge 0, {\Im{\rm m}}\,(\phi(y) \le 0}\) and \({{\Im{\rm m}}\,(\psi(y)) \le 0}\) for \({y \in {\mathbb R}_+}\), we prove that
$ \,\mbox{\rm s-}\hspace{-2pt} \lim_{n\to\infty}(\phi(tA/n)\psi(tB/n))^n = e^{-itC} $
holds true uniformly on \({[0,T]\ni t}\) for any T > 0.
  相似文献   

20.
The Berezin symbol à of an operator A acting on the reproducing kernel Hilbert space H = H(Ω) over some (nonempty) set is defined by \(\tilde A(\lambda ) = \left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle \), λ ∈ Ω, where \(\hat k_\lambda = k_\lambda /\left\| {k_\lambda } \right\|\) is the normalized reproducing kernel of H. The Berezin number of the operator A is defined by \(ber(A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle } \right|\). Moreover, ber(A) ? w(A) (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if \(T = \left[ {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right] \in \mathbb{B}(\mathcal{H}(\Omega _1 ) \oplus \mathcal{H}(\Omega _2 ))\), then
$$ber(T) \leqslant \frac{1}{2}(ber(A) + ber(D)) + \frac{1}{2}\sqrt {(ber(A) - ber(D))^2 + \left( {\left\| B \right\| + \left\| C \right\|} \right)^2 } .$$
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号