首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The wall pressure fluctuations in turbulent boundary layers play an important role in acoustic measurements carried out in moving media. Results of measuring the frequency spectra of wall pressure fluctuations around a surfacing device are presented. The spatial resolution achieved in measuring the wall pressure fluctuations is investigated. It is demonstrated that the results of hydrodynamic flow noise measurements strongly depend on the aperture size of the measuring acoustic transducer and its orientation in the turbulent boundary layer. The pseudosound pressure fluctuation spectra observed in a series of experiments with surfacing devices show that the resolution of the pressure receivers operating in the turbulent boundary layers considerably varies. On the basis of systematic measurements of wall pressure fluctuations by miniature and distributed receivers at high Reynolds numbers, the effect of the geometric dimensions of a pressure receiver on its resolution in the flow noise measurements is studied. An experimental method is proposed for estimating the receiver-induced distortions.  相似文献   

2.
Methods of experimental spatial filtering of wall pressure fluctuations beneath a turbulent boundary layer are developed with the aim of obtaining information on the wave number-frequency spectrum. The spatial filtering of the pressure field components by wave-vector filters is studied. The method of spatial filtering of pressure fluctuations by an acoustic array, i.e., a periodic structure with a finite number of elementary transducers, is analyzed. The relation between the wave number characteristic of the acoustic array and the wave number spectrum of the amplitude distribution of transducer’s local sensitivity is determined. Quantitative estimates are obtained for the sensitivity of the array to the wave number spectrum of turbulent boundary-layer pressures, which is necessary for measuring the wall pressure fluctuations in a turbulent boundary layer by wave-vector filters.  相似文献   

3.
We present in this paper numerical simulations of coupled radiative transfer and turbulent flows at high temperature and pressure, typical of multiphase flows encountered in aluminised solid propellant rocket engines. The radiating medium is constituted of gases and of liquid or solid particles of oxidised aluminum. The turbulent flow of the gaseous phase is treated by using a four equation, low Reynolds number, boundary-layer-type turbulence model. The distributions of concentrations, temperatures, and temperature fluctuation variances of particles are calculated from a Lagrangian approach and a turbulence dispersion model. Thermal and mechanical non-equilibrium between the gas and different classes of particles is allowed. A locally one dimensional, iteratively based, radiative transfer solver is developed to compute wall fluxes and radiative source terms. It is shown that the thermal boundary layer attenuates significantly the radiative fluxes coming from the outer regions. Particle radiation is found to be much more important than gas radiation. Turbulent dispersion of particles in the boundary layer induces a decrease of particle concentration in the region of maximum turbulent kinetic energy, and then, decreases the attenuation effect of wall fluxes due to the boundary layer. The effects of turbulent temperature fluctuations are found to be small in the problem under consideration.  相似文献   

4.
Simple models of the characteristic functional are considered in the context of analyzing the probabilistic characteristics of turbulent pressure fluctuations. The Gaussian model of the spatial characteristic functional of wall-pressure fluctuations is shown to be more appropriate for jet flows, while the Poisson model better describes the characteristic features (splashes) of pressure fluctuations in a turbulent boundary layer. The suggestion is made that the representation of the characteristic functional as a superposition of simple models can reduce the experimental determination of the characteristic functional and the multidimensional distribution functions to measuring only a limited number of parameters and dependences characterizing the turbulent flow under study.  相似文献   

5.
A technique is developed for measuring the intensity of the frequency-wave spectrum components of wall pressure fluctuations of the turbulent boundary layer in a quiet aeroacoustic installation with the use of wave filters in the form of rectangular plates. Aluminium-alloy and organic-glass plates of various thickness under a fine-meshed screen are used, set up rigidly flush with the polished wall of the working part of the installation. The experimental data testify to the fundamental possibility of determining the field components of wall pressure fluctuations of the turbulent boundary layer using similar wave filters in the subconvective region, where a substantially lower pressure fluctuation intensity is observed in comparison to the intensity in the region of the convective maximum of the frequency-wave spectrum at a small flow velocity.  相似文献   

6.
We compare the spectral properties of long meteorological temperature records with laboratory measurements in small convection cells. Surprisingly, the atmospheric boundary layer sampled on a daily scale shares the statistical properties of temperature fluctuations in small-scale experiments. This fact can be explained by the hydrodynamical similarity between these seemingly very different systems. The results suggest that the dynamics of daily temperature fluctuations is determined by the soft turbulent state of the atmospheric boundary layer in the continental climate.  相似文献   

7.
8.
It is shown that, in hydrodynamic noise measurements in the presence of acoustic noise acting upon the pressure fluctuation receiver, spatial filtering methods should provide the best results. Active methods are developed for suppressing the acoustic noise that affects a miniature receiver in the course of turbulent pressure fluctuation measurements. The methods are based on complicating the structure of the measuring transducer by introducing an extra compensating sensing element whose characteristics are identical with those of the main sensing element. The spatial filtering of small-scale turbulent pressure fluctuations by a finite-size electroacoustic transducer is used as the basis for the development of noise-compensated measuring systems, as well as methods of measuring the turbulent pressure fluctuations by receivers with noise compensation. A numerical study of the wave-number filtering of acoustic noise in wall pressure measurements by a noise-compensated receiver is performed.  相似文献   

9.
For hypersonic vehicles,as the temperature in its boundary layer usually exceeds 600 K,for which the molecular vibrational degree of freedom is excited,the perfect gas model is no longer valid.In this paper,the effect of high temperature induced variation of specific heat on the hypersonic turbulent boundary layer of flat plates is investigated by direct numerical simulations with the perfect gas model,i.e.with constant specific heat,as well as with a variable specific heat gas model.The comparison of the results from the two gas models has found that the effect of the variation of specific heat on the velocity of the turbulent boundary layers is relatively small,while its effect on temperature,such as the mean temperature,the temperature fluctuations,is appreciable.It is also found that the mean specific heat is quite close to the specific heat calculated by using the mean temperature,indicating that it is possible to do turbulence modeling.The modeling is done under the variable specific heat gas model with the mean temperature as the variable.The feasibility of such consideration is verified by applying the SST model for variable specific heat turbulence computation.  相似文献   

10.
Large-scale eddies and related aerooptic effects in a turbulent boundary layer, free mixing layer, and a jet flowing out of a round nozzle into a submerged space are simulated. The results obtained are used to analyze the distortions produced in the phase function of a coherent light beam by the turbulent fluctuations of the parameters of the medium. The results of numerical calculation are compared with the data of natural experiment and data obtained by solving Reynolds-averaged Navier-Stokes equations.  相似文献   

11.
Boundary-layer transition has been expected to be an important contributor to sensor flow-induced self-noise. The pressure fluctuations caused by this spatially bounded, and intermittent, phenomenon encompass a very wide range of wavenumbers and temporal frequencies. Here, we analyze the wavevector–frequency spectrum of the wall pressure fluctuations due to subsonic boundary-layer transition as it occurs on a flat plate under zero-pressure gradient conditions. Based on previous measurements of the statistics of the boundary-layer intermittency, it is found that transition induces higher low-streamwise wavenumber wall pressure levels than does a fully developed turbulent boundary layer that might superficially exist at the same location and at the same Reynolds number. The transition zone spanwise wavenumber pressure components are virtually unchanged from the fully developed turbulent boundary-layer case. The results suggest that transition may be more effective than the fully developed turbulent boundary layer in forcing structural excitation at low Mach numbers, and it may have a more intense radiated noise contribution. This may help explain increases in measured sensor self-noise when the sensors are placed near the transition zone. We believe, based on the presented analytical calculation and numerical simulation, that the rapid growth and subsequent decay of turbulent spots in the intermittent transition zone causes the higher low-(streamwise) wavenumber spectra.  相似文献   

12.
An asymptotic theory of saturated fluctuations of laser irradiance diffracted by a thin layer of turbulent medium is built. The treatment is carried out in the phase screen approximation for the case of a power law spectrum of inhomogeneities in the layer. Asymptotic forms of the covariance of irradiance fluctuations are obtained and the character of the scintillation index approach to the asymptotic value is investigated. Calculations are made for collimated and focused laser beams.  相似文献   

13.
Simulation of a thick turbulent boundary layer via a rod grid   总被引:1,自引:0,他引:1  
A possibility to simulate a thick Clauser-equilibrium incompressible turbulent boundary layer on a flat plate of finite length with the help of a grid formed by cylindrical rods was experimentally examined. A grid with rods oriented parallel to the streamlined surface proved to be an efficient tool enabling modification of the turbulent boundary layer. In most cases, at a distance of 600 rod diameters the time-average and fluctuation characteristics of the modified boundary layer exhibited values typical of a natural turbulent boundary layer. It is shown that the mean velocity profiles with artificially increased boundary-layer thickness can be represented, to a good accuracy, in terms of law-of-the-wall variables, and they can be generalized with a single dependence using an empirical velocity scale in the outside region. The use of a combined method for exerting an influence on the shear flow capable of improving the modeling procedure for turbulent velocity fluctuations in boundary layer is proposed.  相似文献   

14.
The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.  相似文献   

15.
The problems of spatial filtering of turbulent aerohydrodynamic noise sources are considered in connection with the problem of the direct measurements of wave number-frequency spectra of turbulent pressure fluctuations. The methods of wave-vector filtering of turbulent pressure fluctuations with the use of an acoustic array, i.e., a periodic structure with a finite number of elementary rectangular pressure transducers, are analyzed. Original versions of the wave number-frequency spectrum analyzer that allows the reconstruction of the wave number spectrum from the results of measurements are developed. The filtering characteristics of such analyzers are studied, and the relation between the wave number characteristic of an acoustic array and the wave number spectrum of the amplitude distribution of transducer’s local sensitivity over the aperture is determined.  相似文献   

16.
湍流边界层噪声是飞机巡航过程中的主要外部噪声源,对舱内噪声水平的影响尤为重要。因此,对飞机机体表面湍流边界层噪声的研究具有重要意义。本文通过试验获得了某型民机巡航过程中的湍流边界层噪声,试飞工况为3500ft/0.78、3500ft/0.7、2500ft/0.67、1500ft/0.66。对实测数据进行分析,发现湍流边界层噪声与动压、边界层厚度等参数有关。同时,利用计算流体力学的方法得到了飞机机体表面的压力分布,并分析了压力梯度对湍流边界层噪声的影响。最后,基于工程预测方法对湍流边界层噪声进行了预测,对于不存在逆压梯度的区域,预测结果与试验结果吻合较好,仅部分频段存在一定偏差。通过对模型的参数进行优化,改善了预测结果。  相似文献   

17.
Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.  相似文献   

18.
The methods proposed earlier for measuring the wave number-frequency spectrum of wall pressure fluctuations beneath a turbulent boundary layer are considered: the spatial filtering of the pressure field components by special-purpose transducers (wave filters) and the digital processing of signals obtained from an array of transducers. It is shown that, for the wave filters, transducers with a rectangular shape of sensitive surface rather than those with a circular one are necessary. Results of measuring the wave number-frequency spectrum of turbulent pressure fluctuations in a low-noise wind tunnel are presented. The measurements are performed with the use of four wave filters consisting of rectangular transducers with a constant sensitivity distribution over their surfaces. The mathematical model of the wave number-frequency spectrum proposed earlier by the authors is compared with the measurement data reported by Abraham and Keith. The model is used for processing the results of measurements in the wind tunnel. The measured spectra are compared with the data obtained by Martin and Leehey.  相似文献   

19.
The flow around a wall-mounted square cylinder of side d is investigated by means of direct numerical simulation (DNS). The effect of inflow conditions is assessed by considering two different cases with matching momentum-thickness Reynolds numbers Reθ ? 1000 at the obstacle: the first case is a fullyturbulent zero pressure gradient boundary layer, and the second one is a laminar boundary layer with prescribed Blasius inflow profile further upstream. An auxiliary simulation carried out with the pseudo-spectral Fourier–Chebyshev code SIMSON is used to obtain the turbulent time-dependent inflow conditions which are then fed into the main simulation where the actual flow around the cylinder is computed. This main simulation is performed, for both laminar and turbulent-inflows, with the spectral-element method code Nek5000. In both cases the wake is completely turbulent, and we find the same Strouhal number St ? 0.1, although the two wakes exhibit structural differences for x > 3d downstream of the cylinder. Transition to turbulence is observed in the laminar-inflow case, induced by the recirculation bubble produced upstream of the obstacle, and in the turbulent-inflow simulation the streamwise fluctuations modulate the horseshoe vortex. The wake obtained in our laminar-inflow case is in closer agreement with reference particle image velocimetry measurements of the same geometry, revealing that the experimental boundary layer was not fully turbulent in that dataset, and highlighting the usefulness of DNS to assess the quality of experimental inflow conditions.  相似文献   

20.
为了探究熵层对扫掠激波/湍流边界层干扰特性的影响规律,采用仿真方法对尖鳍/钝板物理模型进行研究。结果表明:扫掠激波上游的熵层厚度随着平板前缘钝化半径的增大而增加,同时边界层厚度也随着熵层厚度的增加而增加。熵层的引入并不改变扫掠激波/湍流边界层干扰固有的准锥形相似特性,也不会改变拟锥原点(virtual conical origin, VCO)的位置,仅会改变干扰形成的上游影响线和分离线的角度。扫掠激波/湍流边界层干扰形成的锥形主旋涡和角涡的尺度随着熵层厚度的增加而增大。上游熵层的引入增大了下游扫掠激波/湍流边界层干扰区的总压损失,但扫掠激波/湍流边界层干扰自身造成的相对总压损失并不受上游熵层的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号