首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this paper we construct all rational Painlevé-type differential equations which take the binomial form, (d2y/dx2)n = F(x,y,dy/dx), where n ≥ 3, the case n = 2 having previously been treated in Cosgrove and Scoufis [1]. While F is assumed to be rational in the complex variables y and y′ and locally analytic in x, it is shown that the Painlevé property together with the absence of intermediate powers of y″ forces F to be a polynomial in y and y′. In addition to the six classes of second-degree equations found in the aforementioned paper, we find nine classes of higher-degree binomial Painlevé equations, denoted BP-VII,..., BP-XV, of which the first seven are new. Two of these equations are of the third degree, two of the fourth degree, three of the sixth degree, and two of arbitrary degree n. All equations are solved in terms of the first, second or fourth Painlevé transcendents, elliptic functions, or quadratures. In the appendices, we discuss certain closely related classes of second-order nth equations (not necessarily of Painlevé type) which can also be solved in terms of Painlevé transcendents or elliptic functions.  相似文献   

3.
A method for deriving difference equations (the discrete Painlevé equations in particular) from the Bäcklund transformations of the continuous Painlevé equations is discussed. This technique can be used to derive several of the known discrete painlevé equations (in particular, the first and second discrete Painlevé equations and some of their alternative versions). The Painlevé equations possess hierarchies of rational solutions and one-parameter families of solutions expressible in terms of the classical special functions for special values of the parameters. Hence, the aforementioned relations can be used to generate hierarchies of exact solutions for the associated discrete Painlevé equations. Exact solutions of the Painlevé equations simultaneously satisfy both a differential equation and a difference equation, analogously to the special functions.  相似文献   

4.
The six Painlevé equations were introduced over a century ago, motivated by rather theoretical considerations. Over the last several decades, these equations and their solutions, known as the Painlevé transcendents, have been found to play an increasingly central role in numerous areas of mathematical physics. Due to extensive dense pole fields in the complex plane, their numerical evaluation remained challenging until the recent introduction of a fast “pole field solver” [ 1 ]. The fourth Painlevé equation has two free parameters in its coefficients, as well as two free initial conditions. The present study applies this new computational tool to the special case when both of its parameters are zero. We confirm existing analytic and asymptotic knowledge about the equation, and also explore solution regimes which have not been described in the previous literature.  相似文献   

5.
In this paper, we investigate the integrability and equivalence relationships of six coupled Korteweg–de Vries equations. It is shown that the six coupled Korteweg–de Vries equations are identical under certain invertible transformations. We reconsider the matrix representations of the prolongation algebra for the Painlevé integrable coupled Korteweg–de Vries equation in [Appl. Math. Lett. 23 (2010) 665‐669] and propose a new Lax pair of this equation that can be used to construct exact solutions with vanishing boundary conditions. It is also pointed out that all the six coupled Korteweg–de Vries equations have fourth‐order Lax pairs instead of the fifth‐order ones. Moreover, the Painlevé integrability of the six coupled Korteweg–de Vries equations are examined. It is proved that the six coupled Korteweg–de Vries equations are all Painlevé integrable and have the same resonant points, which further determines the equivalence among them. Finally, the auto‐Bäcklund transformation and exact solutions of one of the six coupled Korteweg–de Vries equations are proposed explicitly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
We examine by singularity analysis an equation derived by reduction using Lie point symmetries from the Euler–Bernoulli Beam equation which is the Painlevé–Ince Equation with additional terms. The equation possesses the same leading-order behaviour and resonances as the Painlevé–Ince Equation and has a Right Painlevé Series. However, it has no Left Painlevé Series. A conjecture for the existence of Left Painlevé Series for ordinary differential equations is given.  相似文献   

7.
We consider the phenomenon whereby two different Painlevé hierarchies, related to the same hierarchy of completely integrable equations, are such that solutions of one member of one of the Painlevé hierarchies are also solutions of a higher-order member of the other Painlevé hierarchy. An explanation is given in terms of the Hamiltonian structures of the related underlying completely integrable hierarchies, and is sufficiently generally formulated so as to be applicable equally to both continuous and discrete Painlevé hierarchies. Special integrals of a further Painlevé hierarchy related by Bäcklund transformation to the other Painlevé hierarchy mentioned above can also be constructed. Examples of the application of this approach to Painlevé hierarchies related to the Korteweg–de Vries, dispersive water wave, Toda and Volterra integrable hierarchies are considered. Our results provide further evidence of the importance of the underlying structures of related completely integrable hierarchies in understanding the properties of Painlevé hierarchies.  相似文献   

8.
The Painlevé property of an nth-order differential equation is that no solution has any movable singularities other than poles. This property is strongly indicative of complete integrability (the existence of n ? 1 integrals). However, the usual technique employed to test for the Painlevé property seeks only movable algebraic (or logarithmic) singularities. More general singularities are ignored. But, the six standard Painlevé equations are known to have no such singularities. Painlevé's proof of this is long and laborious; we give here a direct proof.  相似文献   

9.
We consider a system of equations defined using the Hamiltonian operator of the Boussinesq hierarchy, as well as two successive modifications thereof. We are able to reduce the order of these three systems and give Bäcklund transformations between the integrated equations. We also give auto-Bäcklund transformations for the two modified systems.Particular cases of two of the three equations considered correspond to generalized fourth Painlevé hierarchies and are new; these are particular cases of the two modified systems. Thus we obtain auto-Bäcklund transformations for these new fourth Painlevé hierarchies, as well as Bäcklund transformations between our hierarchies. Our results on reduction of order are also applicable in this special case, and include as a particular example a reduction of order for the scaling similarity reduction of the Boussinesq equation, a result which, remarkably, seems not to have been given previously.  相似文献   

10.
In [as reported by Saito et al. (J. Algebraic Geom. 11:311–362, 2002)], generalized Okamoto–Painlevé pairs are introduced as a generalization of Okamoto’s space of initial conditions of Painlevé equations (cf. [Okamoto (Jpn. J. Math. 5:1–79, 1979)]) and we established a way to derive differential equations from generalized rational Okamoto–Painlevé pairs through deformation theory of nonsingular pairs. In this article, we apply the method to concrete families of generalized rational Okamoto–Painlevé pairs with given affine coordinate systems and for all eight types of such Okamoto–Painlvé pairs we write down Painlevé equations in the coordinate systems explicitly. Moreover, except for a few cases, Hamitonians associated to these Painlevé equations are also given in all coordinate charts. Mathematics Subject Classification (2000) 34M55, 32G05, 14J26  相似文献   

11.
We study the asymptotic behavior of solutions of the fourth Painlevé equation as the independent variable goes to infinity in its space of (complex) initial values, which is a generalization of phase space described by Okamoto. We show that the limit set of each solution is compact and connected and, moreover, that any solution that is not rational has an infinite number of poles and infinite number of zeros.  相似文献   

12.
In this paper, we introduce a Frobenius Painlevé IV equation and the corresponding Hamilton system, and we give the symmetric form of the Frobenius Painlevé IV equation. Then, we construct the Lax pair of the Frobenius Painlevé IV equation. Furthermore, we recall the Frobenius modified KP hierarchy and the Frobenius KP hierarchy by bilinear equations, then we show how to get Frobenius Painlevé IV equation from the Frobenius modified KP hierarchy. In order to study the different aspects of the Frobenius Painlevé IV equation, we give the similarity reduction and affine Weyl group symmetry of the equation. Similarly, we introduce a Frobenius Painlevé II equation and show the connection between the Frobenius modified KP hierarchy and the Frobenius Painlevé II equation.  相似文献   

13.
The six Painlevé equations have attracted much interest over the last thirty years or so. More recently many authors have begun to explore properties of higher-order versions of both these equations and their discrete analogues. However, little attention has been paid to differential-delay Painlevé equations, i.e., analogues of the Painlevé equations involving both shifts in and derivatives with respect to the independent variable, and even less to higher-order analogues of these last. In the current paper we discuss the phenomenon whereby members of one differential-delay Painlevé hierarchy define solutions of higher-order members of a second differential-delay Painlevé hierarchy. We also give an auto-Bäcklund transformation for a differential-delay Painlevé hierarchy. The key to our approach is the underlying Hamiltonian structure of related completely integrable lattice hierarchies.  相似文献   

14.
In this paper we construct all Painlevé-type differential equations of the form (d2y/dx2)2 = F(x,y,dy/dx), where F is rational in y and y′=dy/dx, locally analytic in x, and not a perfect square. No further simplifying assumptions are made, but it is found that the absence of a term linear in y″ in the class of equations under investigation forces F to be a polynomial in y and y′. We find exactly six distinct classes of second-degree Painlevé equations, denoted SD-I,??,SD-VI, some of which further subdivide into canonical subcases. Only the first three classes (or at least equations transformable to the first three classes) and part of the sixth have appeared previously in the literature, especially the work of Chazy and Bureau. The fourth and fifth classes are new. The unified treatment of SD-I, which we call the “master Painlevé equation,” is new. Complete solutions are given in terms of the classical Painlevé transcendents, elliptic functions, or solutions of linear equations. In an appendix, it is shown that a class of second-degree equations generalizing the Appell equation can always be reduced to a second-order linear equation.  相似文献   

15.
Based on the fact that the Painlevé equations can be written as Hamiltonian systems with affine Weyl group symmetries, a canonical quantization of the Painlevé equations preserving such symmetries has been studied recently. On the other hand, since the Painlevé equations can also be described as isomonodromic deformations of certain second-order linear differential equations, a quantization of such Lax formalism is also a natural problem. In this paper, we introduce a canonical quantization of Lax equations for the Painlevé equations and study their symmetries. We also show that our quantum Lax equations are derived from Virasoro conformal field theory.  相似文献   

16.
We outline recent developments relating Painlevé equations and 2D conformal field theory. Generic tau functions of Painlevé VI and Painlevé III3 are written as linear combinations of c=1 conformal blocks and their irregular limits. This provides explicit combinatorial series representations of the tau functions, and helps to establish a connection formula for the tau function in the Painlevé VI case.  相似文献   

17.
A classification of solutions of the first and second Painlevé equations corresponding to a special distribution of poles at infinity is considered. The relation between this distribution and singularities of the two-dimensional complex monodromy data manifold used for the parameterization of the solutions is analyzed. It turns out that solutions of the Painlevé equations have no poles in a certain critical sector of the complex plane if and only if their monodromy data lie in the singularity submanifold. Such solutions belong to the so-called class of “truncated” solutions (intégrales tronquée) according to P. Boutroux’s classification. It is shown that all known special solutions of the first and second Painlevé equations belong to this class.  相似文献   

18.
The Painlevé equations were discovered by Painlevé, Gambier and their colleagues during studying a nonlinear second‐order ordinary differential equation. The six equations which bear Painlevé's name are irreducible in the sense that their general solutions cannot be expressed in terms of known functions. Painlevé has derived these equations on the sole requirement that their solutions should be free from movable singularities. Many situations in mathematical physics reduce ultimately to Painlevé equations: applications including statistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field theory, general relativity, nonlinear optics, and fiber optics. This fact has caused a significant interest to the study of these equations in recent years. In this study, the solution of the second Painlevé equation is investigated by means of Adomian decomposition method, homotopy perturbation method, and Legendre tau method. Then a numerical evaluation and comparison with the results obtained by the method of continuous analytic continuation are included. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

19.
We obtain a Painlevé-type differential equation for the simplest rational Hamiltonian associated with the fifth Painlevé equation in the case γ ≠ 0, δ = 0. We prove the existence of Hamiltonians of a nonrational type associated with the fifth Painlevé equation in the case γ ≠ 0, δ = 0. We obtain a generalization of the Garnier and Okamoto formulas for rational Hamiltonians associated with the third Painlevé tequation.  相似文献   

20.
We consider nonlinear ordinary differential equations up to the sixth order that are associated with the heat equation. Each of them is subjected to the Painlevé analysis. For the fourth- and sixth-order equations we obtain a criterion for having the Painlevé property; for the fifth-order equation we formulate necessary conditions for passing the Painlevé test. We also present a fifth-order equation analogous to the Chazy-3 equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号