首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural evolution of an amorphous Fe80B20 alloy subjected to severe plastic deformation at room temperature or at 200°C was studied. Deformation leads to the formation of α-Fe nanocrystals in an amorphous phase. After room-temperature deformation, nanocrystals are localized in shear bands. After deformation at 200°C, the nanocrystal distribution over the alloy is more uniform. Possible causes of the crystallization of the amorphous phase during severe plastic deformation are discussed.  相似文献   

2.
A theoretical study is made of the process of nanocrystallization upon the formation of shear bands created by megaplastic deformation in amorphous metallic alloys. Such nanocrystallization is shown to be caused by a considerable increase in temperature inside the shear bands, which in turn is associated with the stored energy of megaplastic deformation. The temperature increment depends on the degree of deformation, the rate of propagation of the shear band, and the physical parameters that determine the thermal characteristics of an amorphous matrix in the range of the shear band.  相似文献   

3.
The mechanical behavior and morphological features of the formation of strain relief in amorphous Co-Fe-Cr-Si-B alloys are studied in the initial stage of severe plastic deformation. Patterns of propagation in shear bands upon pressure torsion are revealed. The effects of surface etching and the decoration of shear bands are studied in the alloys. The causes behind these phenomena are discussed using a set of methods for structural investigation.  相似文献   

4.
Features of the formation of shear bands and nanocrystalline phases upon the megaplastic deformation of amorphous alloys based on iron, nickel, and titanium at room temperature in a Bridgman chamber are analyzed via transmission electron microscopy. It is shown that the transition from strongly localized to quasi-homogeneous plastic deformation occurs at a definite stage of the inhomogeneous plastic flow. Mechanisms based on the self-blocking of propagating shear bands by particles of the nanocrystalline phase that emerge due to a dissipative increase in the temperature along the front of shear bands are proposed for the delocalization of plastic flow.  相似文献   

5.
Based on recent studies of the morphology and of shear bands and crazes in amorphous polymers it is suggested that shear is the basic mechanism of plastic deformation. Three stages are proposed for the formation of crazes, shear yielding at a defect or craze tip due to stress concentration, nodular movement resulting in fibril formation, followed by void formation between the fibrils.  相似文献   

6.
王海龙  王秀喜  王宇  梁海弋 《物理学报》2007,56(3):1489-1493
利用分子动力学方法研究了非晶Ti3Al合金拉伸过程中的晶化行为,模拟结果表明局部塑性变形导致非晶合金晶化.从微观结构演化的角度分析了拉伸过程中的晶化机理,局部剪切导致拉伸过程中晶粒发生成核与合并,最终生成的晶粒具有面心立方结构.晶核的生长过程伴随着应力强化现象,非晶相中的纳米晶粒能提高非晶合金材料的强度. 关键词: 非晶合金 变形晶化 分子动力学  相似文献   

7.
任景莉  于利萍  张李盈 《物理学报》2017,66(17):176401-176401
非晶态材料有着复杂的原子结构(短程有序、长程无序)和特殊的物理性质,其临界现象和相变问题一直受到学术界关注.非晶合金,又称为金属玻璃,是一种新型的非晶态材料,具有很高的强度和优异的弹性.从微观的角度来看,非晶合金可以看作是一个多粒子系统.临界现象的研究对认识和理解多粒子系统之间的相互作用有深刻的意义.本文主要讨论非晶合金中的临界现象,包括非晶合金从制备过程、微观结构到宏观的力学性能以及磁性方面存在的临界现象,并分析这些临界现象之间的内在联系,进而深入理解非晶合金的微观结构对其宏观性质的影响.这为认识非晶合金的形成本质,提高服役可靠性,探索具有实际应用价值的非晶合金提供理论依据.  相似文献   

8.
The effect of holes on the band formation and the serrated deformation in planar specimens of aluminum–magnesium alloys AlMg5 and AlMg6 is studied by high-speed video filming of moving deformation bands. It is found that the concentration of an elastic field near a hole causes early nucleation of macrolocalized deformation bands and decreases the critical deformation of the first stress drop. Differences between the spatial–temporal patterns of deformation bands near holes under various deformation conditions are revealed.  相似文献   

9.
The structure and strain relief of TiNi alloy are examined following combined deformation consisting of quasi-hydro-extrusion followed by uniaxial compression. The shear nature of the amorphous bands resulting from such strain is demonstrated. A connection between the amorphous bands and the strain relief has been found. Fiz. Tverd. Tela (St. Petersburg) 39, 1237–1239 (July 1997)  相似文献   

10.
R. Kalsar  R. Madhavan  R. K. Ray 《哲学杂志》2020,100(16):2143-2164
ABSTRACT

The evolution of deformation texture and microstructure in commercially pure Al (cp-Al) and two Al–Mg alloys (Al–4Mg and Al–6Mg) during cold rolling to a very large strain (true strain εt? ≈?3.9) was investigated. The development of deformation texture in cp-Al, after rolling, can be considered as pure metal or Copper-type, which is characterised mainly by the presence of Cu {112}<111>, Bs {110}<112> and S {123}<634> components. The deformation microstructure clearly indicates that deformation mechanism in this case remains slip dominated throughout the deformation range. In the Al–4Mg alloy, the initial slip mode of deformation is finally taken over by mechanism involving both slip and Copper-type shear bands, at higher deformation levels. In contrast, in the Al–6Mg alloy, the slip and twin mode of deformation in the initial stage is replaced by slip and Brass-type shear bands at higher deformation levels. Although a Copper-type deformation texture forms in the two Al–Mg alloys at the initial stage of deformation, there is a significant increase in the intensity of the Bs component and a noticeable decrease in the intensity of the Cu component at higher levels of deformation, particularly in the Al–6Mg alloy. This phenomenon indicates the possibility of transition of the deformation texture from Cu-type to Bs-type, which is concurrent with the addition of Mg. Using visco-plastic self-consistent modelling, the evolution of deformation texture could be simulated for all three materials.  相似文献   

11.
In this study, optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and electron probe microanalyser were used to analyse the changes in microstructure of AISI 4340 steel specimens caused by impact at high strain rates and large strains. The structures of the steel prior to dynamic deformation and after dynamic deformation were examined to understand on a microscale level, the mechanism of formation of adiabatic shear bands (ASBs). The study also includes the structural changes that occur during post-deformation annealing processes which may relate to understanding of the mechanism of formation of ASBs. Prior to deformation, the tempered steel specimens consisted of lenticular laths of α-ferrite with precipitated platelet and spherical M3C carbides. After impact, the structure inside the shear band was characterized by refined and recrystallized grains immersed in dense dislocation structures. In addition, residual carbide particles were observed inside the shear bands due to deformation induced carbide dissolution. Regions away from the shear bands developed ‘knitted’ dislocation walls, evolving gradually into sub-boundaries and highly misoriented grain boundaries at increasing strains, leading to grain refinement of the ferrite. After impact, annealing the shear bands at 350?°C resulted in an increase in hardness regardless of the heat treatment before impact, amount of deformation and the time of annealing. This is because of the occurrence of extensive reprecipitation of dissolved carbides that existed in the steel structure prior to deformation. It is concluded that dynamic recovery/recrystallization, development of dislocation structures and carbide dissolution all contribute simultaneously to the formation of ASBs in quench-hardened steels.  相似文献   

12.
Patterns of plastic deformation of amorphous nanocrystalline composites, caused by the local action of an indenter on a thin electron microscopy foil, have been experimentally investigated for the first time in structural analysis. Classification of the observed types of interaction of shear bands with crystalline nanoparticles is performed. This classification is in good agreement with the theoretically predicted interaction mechanisms.  相似文献   

13.
The effect of laser radiation power on the Raman spectra of amorphous silicon obtained by electron-beam evaporation has been revealed. The formation of nanocrystalline inclusions in the amorphous matrix under exposure to a laser with a power of more than 2.5 mW is established by Raman spectroscopy and photoluminescence. The influence of the fabrication conditions (substrate temperature and annealing in a vacuum) of source amorphous silicon films on the formation of nanocrystalline inclusions formed by subsequent laser treatment has been investigated. The features of silicon nanocrystal formation in cases when the original amorphous silicon film is obtained at a substrate temperature of ∼250°C have been revealed. These features may be associated with the presence of silicon-silicon multiple bonds.  相似文献   

14.
The thermal stability of a number of Ti-base and Zr-base amorphous alloys was studied by means of differential scanning calorimetry. The crystallization temperatures of these amorphous alloys and those reported in the literature for a variety of other amorphous alloys (actinide-base alloys an refractory metal-base alloys) were analysed in terms of the corresponding formation enthalpies. It is shown that there is no correlation between the crystallization temperatures and the formation enthalpies. On the other hand the crystallization temperatures were found to scale more or less linearly to the corresponding formation enthalpies of a hole the size of the smaller type of atom in the binary amorphous alloys.  相似文献   

15.
平志海  钟鸣  龙志林 《物理学报》2017,66(18):186101-186101
从非晶合金的微观结构出发,基于处理强无序和具有随机几何结构系统常用的理论方法——逾渗理论来描述非晶合金剪切屈服时的塑性流变.为了更好地理解非晶合金剪切带萌生时的临界问题,结合已有的"自由体积(free volume)模型"和"剪切转变区(shear transformation zone)模型",建立了非晶合金剪切转变的逾渗模型.以Cu_(25)Zr_(75)二元非晶合金为例,计算了在剪切转变区内易发生塑性流动的原子团簇剪切失稳的逾渗阈值,并粗略估算了这些原子团簇的大小.研究发现,剪切失稳的逾渗阈值与临界约化自由体积浓度(x_c~2.4%)有着相似的特性,不同之处在于其值与自由体积的分散度有着密切联系.研究结果作为非晶合金的韧脆转变问题提供了新思路.  相似文献   

16.
B. Zhang 《哲学杂志》2013,93(24):3293-3311
Attempts at generating nanograins through uniaxial single compression were made by deforming copper samples at 298 K and 77 K. At 298 K, dynamically-deformed samples (DDS) become softer, in contrast to quasi-statically deformed samples (QDS), which show a hardness close to the saturation value. The microstructure of DDS is characterised by deformation twins and equiaxed micron-sized grains, and the observed softening is due to the occurrence of recrystallisation (RX). At a reduced temperature of 77 K, nanograins are generated in DDS, whereas QDS show forest dislocations and twins. The generation of nanograins, which evolve through rotational DRX, is associated with the formation of shear bands with an amorphous structure. Compared with twinning, it appears that amorphisation plays a more pronounced role in high strain rate deformation at reduced temperatures (77 K). The hardness of DDS, obtained from compression at 77 K, exceeds the saturation value by 16%, whereas that of QDS corresponds approximately to saturation.  相似文献   

17.
The temperature dependence of the conditions of formation of limiting (steady) structural states at severe plastic deformation of amorphous alloys has been theoretically analyzed. Within an approach based on principles of nonequilibrium thermodynamics, it has been shown that, depending on the temperature of severe plastic deformation, the free energy of the steady state can be both above and below the energy of the initial state.  相似文献   

18.
We study experimentally the dynamical heterogeneities occurring at slow shear, in a model amorphous glassy material, i.e., a 3D granular packing. The deformation field is resolved spatially by using a diffusive wave spectroscopy technique. The heterogeneities show up as localized regions of strong deformations spanning a mesoscopic size of about 10 grains and called the "hot spots." The spatial clustering of hot spots is linked to the subsequent emergence of shear bands. Quantitatively, their appearance is associated with the macroscopic plastic deformation, and their rate of occurrence gives a physical meaning to the concept of "fluidity," recently used to describe the local and nonlocal rheology of soft glassy materials.  相似文献   

19.
The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys. The purpose of this paper is to explore an approach to improving the ductility and strength of Mg alloys at the same time. Here, the effect of amorphous phase strength, crystalline phase strength, and amorphous boundary(AB) spacing on the mechanical properties of dual-phase Mg alloys(DPMAs) under tensile loading are investigated by the molecular dynamics simulation method. The results confirm that the strength of DPMA can be significantly improved while its excellent plasticity is maintained by adjusting the strength of the amorphous phase or crystalline phase and optimizing the AB spacing. For the DPMA, when the amorphous phase(or crystalline phase) is strengthened to enhance its strength, the AB spacing should be increased(or reduced) to obtain superior plasticity at the same time. The results also indicate that the DPMA containing high strength amorphous phase exhibits three different deformation modes during plastic deformation with the increase of AB spacing. The research results will present a theoretical basis and early guidance for designing and developing the high-performance dual-phase hexagonal close-packed nanostructured metals.  相似文献   

20.
The formation of slip bands is the main mechanism of cyclic deformation in pure Al. Their density, orientation and heights in polycrystalline Al were investigated during cycling. Types, sizes and densities of precipitates are responsible for the mode of cyclic deformation in AlCu4 pure alloy. In technical Al alloys intermetallic phases have detrimental effects on deformation homogeneity and largely govern the fatigue mechanism of the material and especially microcrack initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号