首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We use Large Eddy Simulation to investigate the influence of upstream boundary conditions on the development of a backward facing step flow. The first inlet condition consists of a mean turbulent boundary layer velocity profile perturbed by a white noise. The second relies upon a precursor calculation where the development of a quasi-temporal turbulent boundary layer is simulated. In this case, the quasi-longitudinal vortices in the upstream turbulent boundary-layer trigger the destabilization of the shear layer just behind the step, resulting in a shortening of the recirculation length and an increase of the characteristic frequency associated to the Kelvin–Helmholtz vortices. The mean flow and the characteristic frequencies of pressure fluctuations are strongly dependent of the upstream flow. It demonstrates the importance of realistic boundary conditions for the simulation of complex 3D flows or for flow control simulations. To cite this article: J.-L. Aider, A. Danet, C. R. Mecanique 334 (2006).  相似文献   

2.
The interaction of homogeneous and isotropic turbulence with a shock wave is observed by solving the Reynolds-averaged Navier–Stokes equations with the k? turbulence model. All turbulent fluctuations are measured at the period of expansion in the turbulent field and during compression by the reflected shock on turbulent field, and it is observed that the longitudinal turbulent velocity fluctuation is enhanced more at the period of expansion due to incident shock wave movement far from the turbulent field. The amplification of the turbulent kinetic energy (TKE) level in the shock/turbulence interaction depends on the shock wave strength and the longitudinal velocity difference across the shock wave. On decreasing the longitudinal velocity difference across the shock, the turbulent kinetic energy (TKE) level is less amplified. The TKE level is amplified by the factor of 1.5–1.8 in the shock/turbulence interaction where the dissipation rate of TKE decreases in all cases of shock/turbulence interaction. After the shock/turbulence interaction, the turbulent dissipative-length scale is amplified slightly and the amplification of the length scales decreases when increasing the shock strength. To cite this article: M.A. Jinnah, K. Takayama, C. R. Mecanique 333 (2005).  相似文献   

3.
Topological aspects of the turbulent wake of a finite, surface-mounted, square-cross-section cylinder of h/d = 4 are addressed by decomposing the velocity field into a quasi-periodic coherent part and the unresolved incoherent fluctuations. The three-dimensional large scale structure is educed through a reconstruction of planar phase-averaged PIV measurements using the simultaneously sampled surface pressure difference on opposing sides of the obstacle as a phase reference. A topological model for the vortex structure is educed and mean streamwise wake vorticity is explained in terms of the connections between initially vertical structures shed alternately from either side of the obstacle, rather than previously proposed ‘tip’ vortex structures generated at the obstacle free-end. The coherent structure educed accounts for a significant portion of the fluctuating energy in the wake. The turbulent field is further analyzed by finding Lagrangian straining structures that form by induction of the coherent vorticity field, and these structures are related to the energy transfer from the base phase-averaged flow since they act to stretch incoherent vorticity fluctuations in their neighbourhood.  相似文献   

4.
In the spirit of Ha Minh's semi-deterministic model, we propose a new method for computing fully-developed turbulent flows, called Coherent Vortex Simulation (CVS). It is based on the observation that turbulent flows contain both an organized part, the coherent vortices, and a random part, the incoherent background flow. The separation into coherent and incoherent contributions is done using the wavelet coefficients of the vorticity field and the Biot–Savart kernel to reconstruct the coherent and incoherent velocity fields. The evolution of the coherent part is computed using a wavelet basis, adapted at each time step to resolve the regions of strong gradients, while the incoherent part is discarded during the flow evolution, which models turbulent dissipation. The CVS method is similar to LES, but it uses nonlinear multiscale band-pass filters, which depend on the instantaneous flow realization, while LES uses linear low-pass filters, which do not adapt to the flow evolution. As example, we apply the CVS method to compute a time developing two-dimensional mixing layer and a wavelet forced two-dimensional homogeneous isotropic flow. We also demonstrate how walls or obstacles can be taken into account using penalization and compute a two-dimensional flow past an array of cylinders. Finally, we perform the same segmentation into coherent and incoherent components in a three-dimensional homogeneous isotropic turbulent flow. We show that the coherent components correspond to vortex tubes, which exhibit non-Gaussian statistics and long-range correlation, with the same k −5/3power-law energy spectrum as the total flow. In contrast, the incoherent components correspond to an homogeneous random background flow which does not contain organized structures and presents an energy equipartition together with a Gaussian PDF of velocity. This justifies their elimination during the CVS computation to model turbulent dissipation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The solid particle dispersion in saltating motion is studied in an homogeneous turbulence and in a turbulent boundary layer. The fluid velocity along the particle trajectory is estimated using a continuous stochastic differential equation in which the correlation integral time takes into account gravity and inertia effects. As far as the boundary layer is concerned, the aerodynamic entrainment of particles and the rebound are modelised as random variables with Gaussian probability density functions. Compared with experimental results, the numerical results show good agreement for dispersion, although velocity fluctuations are slightly under evaluated. To cite this article: C. Aguirre et al., C. R. Mecanique 332 (2004).  相似文献   

6.
Flow stability analysis and excitation using pulsating jets   总被引:1,自引:0,他引:1  
Classical flow stability applied to transition from laminar to turbulent flow may also describe the behavior of vorticity fluctuations created by a pulsating jet placed along a solid boundary. A numerical laminar flow experiment involving a pulsating jet placed along the surface of a duct with flow separation downstream, resulted in eliminating most part of the separated flow region. Applying the same approach to a turbulent flow, it was possible to develop a turbulent stability flow formulation and apply successfully turbulent pulsating jet flow separation control. To cite this article: D. Skamnakis, K. Papailiou, C. R. Mecanique 333 (2005).  相似文献   

7.
This work is focused on the study of the impingement of a turbulent plane jet on a moving film. A computational fluid dynamics code has been used to simulate the interaction between the turbulent plane jet and the moving film. Since the problem of coupling between turbulence and free surface flow is poorly understood and experiments in this problem are difficult to carry out, this new numerical tool has been designed to give insight into global and local parameters of the free surface flow. To cite this article: D. Lacanette et al., C. R. Mecanique 333 (2005).  相似文献   

8.
For particular turbulent flows, PIV measurements technique provides more than 10% of spurious velocity vectors at each time step. To correct these vectors, we propose to use the Linear Stochastic Estimation (LSE) dealing with the spatial correlation tensor of the velocity. If this tensor cannot be determined in some measurement zones, Proper Orthogonal Decomposition is used to model this tensor. Both reconstruction methodologies are tested from PIV measurements performed in a Spark Ignition engine flow. We show that for coherent structures analysis, the LSE reconstruction method provides better results than classical mathematical interpolation methods. To cite this article: Ph. Druault, Ph. Guibert, C. R. Mecanique 332 (2004).  相似文献   

9.
10.
We extend the validity range of Kida's log-stable law of stability index α=1.65 and intermittency parameter μ=0.2 to a new range of Reynolds number. This law describes intermittencies in fully developed turbulent flows or more precisely the p.d.f. of turbulence dissipation. Former measurements of the hyper-flatness factors of order 4, 5, 6 of turbulent velocity increments, coming from both experimental works and numerical simulations are used. We show that the power-law variation of these hyper-flatness factors with Taylor scale based Reynolds numbers Reλ can be fitted, for Reλ ranging from 35 to 750, by a log-stable law of stability index α=1.65 and intermittency parameter μ=0.21. To cite this article: N. Rimbert, O. Séro-Guillaume, C. R. Mecanique 331 (2003).  相似文献   

11.
To allow for a reliable examination of the interaction between velocity fluctuations, acoustics and combustion, a novel numerical procedure is discussed in which a spectral solution of the Navier–Stokes equations is directly associated to a high-order finite difference fully compressible DNS solver (sixth order PADE). Using this combination of high-order solvers with accurate boundary conditions, simulations have been performed where a turbulent premixed V-shape flame develops in grid turbulence. In the light of the DNS results, a sub-model for premixed turbulent combustion is analyzed. To cite this article: R. Hauguel et al., C. R. Mecanique 333 (2005).  相似文献   

12.
This work deals with the study of free surface and aspect ratio effects on the instability of the Taylor–Couette flow. The experimental results have been obtained using the polarographic technique. The time-averaged values of the wall velocity gradient have been determined and the spectral analysis of its fluctuations has been done. These first results show the existence of a critical height Hc of the liquid column. For an aspect ratio Γ=H/d<10, the laminar turbulent transition occurs without azimuthal wave mode. To cite this article: A. Madamdia et al., C. R. Mecanique 331 (2003).  相似文献   

13.
In recent years, several numerical studies have shown the feasibility of Direct Noise Computation (DNC) where the turbulent flow and the radiated acoustic field are obtained simultaneously by solving the compressible Navier–Stokes equations. The acoustic radiation obtained by DNC can be used as reference solution to investigate hybrid methods in which the sound field is usually calculated as a by-product of the flow field obtained by a more conventional Navier–Stokes solver. A hybrid approach is indeed of practical interest when only the non-acoustic part of the aerodynamic field is available. In this review, some acoustic analogies or hybrid approaches are revisited in the light of CAA. To cite this article: C. Bailly et al., C. R. Mecanique 333 (2005).  相似文献   

14.
Direct numerical simulations associated with mixing in constant-density round coaxial jets are performed. They are validated by comparison against laboratory experiments. The mixing process is studied by seeding a passive tracer first in the outer annular jet, then in the inner jet. We demonstrate the important role played by coherent vortices in the mixing mechanisms. The turbulent mixing exhibits an intermittent character as a consequence of fluid ejections caused by the counter-rotating streamwise vortices. We quantify also the domination of the outer jet and show that the fluid issuing from the central jet remains confined. To cite this article: G. Balarac, M. Si-Ameur, C. R. Mecanique 333 (2005).  相似文献   

15.
The aerodynamic study of a row of axisymmetric jets impinging a concave wall is carried out from velocity measurements obtained by the standard and stereoscopic Particle Image Velocimetry. The principle and the specific aspects of the stereoscopic PIV set up, a recent technique of three-dimensional velocimetry, are explained. After a statistical data processing, the three-dimensional structure and the characteristics of multiple jets impinging a concave wall are described with the mean velocity fields and the turbulent values in several planes of the flow. To cite this article: V. Gilard, L.-E. Brizzi, C. R. Mecanique 334 (2006).  相似文献   

16.
The interaction of three-dimensional isotropic turbulence with a plane shock at Mach numbers of M=2.0 and M=3.0 is investigated via direct numerical simulation. The numerical scheme is based on a characteristic-type formulation of the Navier–Stokes equations and uses fifth-order upwind schemes in space, a fourth order Runge Kutta scheme in time and a shock-fitting as inlet condition. The isotropic turbulence was generated in a separate computation based on a prescribed energy spectrum. This turbulent flow is considered as frozen, and is convected through the shock with a prescribed average shock speed. An FFT interpolation is used to obtain the upstream values at the instantaneous shock location. Turbulence enhancement is observed, and the evolution of velocity fluctuations as well as turbulence microscales are in good agreement with the behaviour observed using shock-capturing. To cite this article: J. Sesterhenn et al., C. R. Mecanique 333 (2005).  相似文献   

17.
The application of the polytropic approximation connecting the quantities of corresponding state, to experimental analysis, is clarified. A method of polytropic determination of the exponent χ (variable but non-fluctuating) in each point of the flow is given. This approximation makes it possible the generation of representative signals of fluctuating quantities, like pressure or density. For heated gases, the problem of measurement of the equations terms written with Favre averaging is thus almost solved. Then, measurement of χ allows the determination by the experiment of crucial terms like turbulent fluxes of mass and momentum, and presso correlation. To cite this article: C. Rey, S. Benjeddou, C. R. Mecanique 332 (2004).  相似文献   

18.
Hairpin-like vortical structures that form in the wall region of turbulent channel flow are investigated. The analysis is performed by following a procedure in which the Navier-Stokes equations are first integrated by means of a computational code based on a mixed spectral-finite difference technique in the case of the flow in a plane channel. A DNS turbulent-flow database, representing the turbulent statistically steady state of the velocity field through 10 viscous time units, is computed and the vortex-detection method of the imaginary part of the complex eigenvalue pair of the velocity-gradient tensor is applied to the velocity field. As a result, hairpin-like vortical structures are educed. Flow visualizations are provided of the processes of evolution that characterize hairpin vortices in the wall region of turbulent channel flow. The relationship is investigated between vortex dynamics and 2nd- and 4th- quadrant events, showing that ejections and sweeps play a fundamental role in the way the morphological evolution of a hairpin vortex develops with time.  相似文献   

19.
An analysis is made of the unsteady lift exerted on a stationary rigid body immersed in an incompressible, plane-wall turbulent boundary layer. The lift is expressed as a surface integral over the body involving theupwash velocity induced by the “free” vorticity Ω (found by taking explicit account of the interaction of the body with the flow and excluding the bound vorticity) and a harmonic function X2that depends only on the shape of the body. The upwash velocity is the free-field velocity given in terms of Ω by the Biot–Savart formula, augmented by the velocity field of a conventional distribution of image vortices in the wall. The function X2can be interpreted as the velocity potential of flow past the body, produced by motion of the wall at unit speed towards the body. Detailed predictions are made of the lift on a slender airfoil placed in the outer region of the boundary-layer. When the airfoil chord is large compared to the boundary-layer thickness, vortex shedding into the wake causes the magnitude of the net upwash velocity near the trailing edge to be small. The main contributions to the surface integral are then from the nose region, where the upwash velocity may be estimated independently of the fluctuations near the trailing edge. Analytical results for a thin plate airfoil of chord 2a at distance h from the wall show that the lift increases as a/h increases; it is ultimately independent of a and scales with the ratio of h to the hydrodynamic wavelength. Application is made to determine the sound generated by the airfoil in a weakly compressible boundary layer flow over a finite elastic plate.  相似文献   

20.
For small times following the distortion of an isotropic state, rapid-distortion theory provides the tensorial form of one-point correlation expansions for homogeneous rotational turbulent mean flows. It is considered that the consistency with such expansions must be satisfied by any closure model. The Note describes the general structure of these expansions as well as some of their properties. It is shown how cumulated effects (strain and rotation) are involved. To cite this article: J. Piquet, C. R. Mecanique 333 (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号