首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conical carbon fibers (CCFs) with carbon nanotubes (CNTs) as their cores were grown on graphite substrates with a chemical vapor deposition method. The CNT-cored CCFs were about several tens of micrometers in length. In the interaction with a probe system, the CNT core filaments demonstrated good mechanical strength. Furthermore, field emission currents around 100 μA were also attained from individual CNTs. The growth mechanism of this CNT/CCF combined structure is briefly discussed. Our method has provided a convenient and inexpensive approach to mass assembling CNTs to a carbon substrate. PACS 81.05.Uw; 81.15.Gh; 79.70.+q  相似文献   

2.
Based on the analysis of catalyst particle formation and carbon nanotube (CNT) array growth process in floating catalyst chemical vapor deposition (CVD), delicately controlled gaseous carbon sources and catalyst precursors were introduced into the reactor for the controllable growth of CNT array. The low feeding rate of ferrocene was realized through low-temperature sublimation. With less ferrocene introduced into the reactor, the collision among the in situ formed iron atoms decreased, which led to the formation of smaller catalyst particles. The mean diameter of the CNT array, grown at 800oC, decreased from 41 to 31 nm when the ferrocene-sublimed temperature reduced from 80 to 60oC. Furthermore, low growth temperature was adopted in synthesis, through the modulation of the CNT diameter, by controlling the sintering of catalyst particles and the collision frequency. When the growth temperature was 600oC, the as-grown CNTs in the array were with a mean diameter of 10.2 nm. If propylene was used as carbon source, the diameter can be modulated in similar trends. The diameter of CNT can be modulated by the parameter of the operation using the same substrate and catalyst precursor without other equipment or previous treatment. Those results provide the possibility for delicately controllable synthesis of CNT array via simple floating catalyst CVD.  相似文献   

3.
We investigated the release potential of single-wall carbon nanotubes (CNTs) produced by the super-growth method during their manufacturing and handling processes at a research facility. We generally sampled air at points both outside and inside of protective enclosures such as a glove box and fume hood. Sampling the air outside of the enclosures was intended to evaluate the actual exposure of workers to CNTs, while sampling the air inside the enclosures was performed to quantify the release of CNTs to the air in order to estimate the potential exposure of workers without protection. The results revealed that airborne CNTs were generated when (1) CNTs were separated from the substrates using a spatula and placed in a container in a glove box; (2) an air gun was used to clean the air filters (containing dust that included CNTs) of a vacuum cleaner; (3) a vacuum cleaner was used to collect CNTs (emission with exhaust air from the cleaner); (4) the container of CNTs was opened; and (5) CNTs in the bin of the cleaner were transferred to a container. In these processes, airborne CNTs were only found inside the enclosures, except for a small amount of CNTs released from the glove box when it was opened. Electron microscopic observations of aerosol particles found CNT clusters, which were fragments of CNT forests, with sizes ranging from submicrometers to tens of micrometers.  相似文献   

4.
Suspensions of carbon nanotubes (CNTs) and organic solvent were dropped onto a substrate which had patterned electrodes while applying a DC voltage between the electrodes. Both multiwall and single-wall (SW) CNTs were purified from the mixture of CNTs and the undesirable particles of carbon when the solvent dichloromethane was used at high temperature. It is found that a SW CNT bridges the gap of the electrodes. This enables us to fabricate CNT devices at a controlled position.  相似文献   

5.
The relationships among the nominal thickness of Co catalyst, the structure of the catalyst particles, and the structure of carbon nanotubes (CNTs) growing from the catalyst during chemical vapor deposition were investigated. Various morphologies of CNTs such as individuals, random networks parallel to the surface of the substrate (‘grasses’), and vertically aligned forests of single- and multi-walled carbon nanotubes were grown by only varying the nominal thickness of catalyst under the same reaction condition. These different morphologies at the same growth time were due to the different areal density rather than to the length of CNTs. With increasing nominal thickness of catalyst, the catalyst particles changed in diameter while their areal density remained relatively almost constant. The change in diameter possibly affected the number ratio of active catalyst particles to the whole particles, which in turn affected the areal density of CNTs and yielded the various morphologies. Longer growth time increased the CNT length, which caused further change in CNT morphologies from individuals to grasses and grasses to forests.  相似文献   

6.
The functionalization of carbon nanotubes (CNTs) was carried out by using different chemical treatment methods. These functionalized CNTs were characterized by TEM image and FT-IR spectra. The CNT electrodes are measured by thermal resistivity and cyclic voltammetry experiments. The results showed that two important factors controlled the electrochemical properties of the CNT film electrode: one is the active functional group; another is activation energy of the CNT film. From our experiments, we have found the electrode of 10 min nitric acid treated CNTs have the optimal peaks in relation to carboxylic acids, the highest redox peak currents, the biggest value of k0 and well-defined quasi-reversible voltammograms for redox of iron couples, in which the two factors best match.  相似文献   

7.
Efficient conversion of waste plastics into advanced materials is of conspicuous environmental, social and economic benefits. A coupled process of plastic pyrolysis and chemical vapor deposition for vertically aligned carbon nanotube (CNT) array growth was proposed. Various kinds of plastics, such as polypropylene, polyethylene, and polyvinyl chloride, were used as carbon sources for the controllable growth of CNT arrays. The relationship between the length of CNT arrays and the growth time was investigated. It was found that the length of aligned CNTs increased with prolonged growth time. CNT arrays with a length of 500 μm were obtained for a 40-min growth and the average growth rate was estimated to be 12 μm/min. The diameter of CNTs in the arrays can be modulated by controlling the growth temperature and the feeding rate of ferrocene. In addition, substrates with larger specific surface area such as ceramic spheres, quartz fibers, and quartz particles, were adopted to support the growth of CNT arrays. Those results provide strong evidence for the feasibility of conversion from waste plastics into CNT arrays via this reported sustainable materials processing.  相似文献   

8.
We report on the results of experimental study of an array of vertically aligned carbon nanotubes (VA CNTs) by scanning tunnel microscopy (STM). It is shown that upon the application of an external electric field to the STM probe/VA CNT system, individual VA CNTs are combined into bundles whose diameter depends on the radius of the tip of the STM probe. The memristor effect in VA CNTs is detected. For the VA CNT array under investigation, the resistivity ratio in the low- and high-resistance states at a voltage of 180 mV is 28. The results can be used in the development of structures and technological processes for designing nanoelectronics devices based on VA CNT arrays, including elements of ultrahigh-access memory cells for vacuum microelectronics devices.  相似文献   

9.
Single- and multiwalled carbon nanotubes (CNTs) were synthesised by a novel aerosol method using alcohols, namely ethanol and octanol, as carbon precursors. Preformed iron and nickel aerosol nanoparticles, produced by evaporation from resistively heated metal wire, were used as catalysts. Multiwalled CNTs were initiated by 10 nm sized catalyst particles and produced in the presence of ethanol vapour with the partial pressure of 7072 Pa, while combination of 2.4 nm particles and decreased alcohol vapour pressure (123 Pa) resulted in the formation of mainly single-walled and a small fraction of double-walled CNTs. The effect of a promoter (thiophene) in the system was found to be very important for the synthesis of multiwalled CNTs, while only a 30% number concentration increase was found for the single-walled CNT production.  相似文献   

10.
Novel hybridized multi-walled carbon nanotubes (CNTs), consisting of a unique hyperbranched polyaniline (HSiPA) and CNTs, were prepared. The interaction between HSiPA and CNTs was investigated by many techniques, and results show that there are strong ππ and electrostatic interactions between HSiPA and CNTs, so HSiPA can stack firmly onto the surface of CNTs to form a coating. Based on this, a new kind of ternary composites made up of hybridized CNTs and epoxy (EP) resin was prepared, the influence of the ratio of HSiPA to CNTs on the structure and properties of the HSiPA/CNT/EP composites was intensively studied. The percolation threshold of HSiPA/CNT/EP composites is very low (1.26 wt%); besides, with a suitable ratio of HSiPA to CNTs, the HSiPA/CNT/EP composite has much higher dielectric constant and lower dielectric loss than the CNT/EP composite with the same loading of CNTs. When the ratio of HSiPA to CNTs is 0.5:1, the dielectric constant and loss at 100 Hz of the resultant HSiPA/CNT0.5/EP composite are 711 and 1.53, about 7.1 and 4.3 × 10?3 times the corresponding value of CNT0.5/EP composite, respectively. In addition, compared with traditional CNT/EP composites, the HSiPA/CNT0.5/EP composites have different equivalent circuit models. These attractive results are attributed to unique structure of hybridized CNTs, and thus leading to greatly different structures between the CNT0.5/EP and HSiPA/CNT0.5/EP composites. This investigation reported herein suggests a new approach to prepare new CNTs and related composites with controllable dielectric properties.  相似文献   

11.
This paper presents a practically useful model that can predict the formation process and the growth rate of iron nanoparticles from ferrocene. There is a strong need to create such a model that can help improve the process of carbon nanotube (CNT) production by chemical vapor deposition (CVD) and flame synthesis methods. This study serves this purpose. A simple reaction mechanism between ferrocene and hydrogen was proposed based on experimental and theoretical studies conducted by other researchers; then the method of moments with interpolative closure (MOMIC) was applied to compute the size distribution of iron particles. MOMIC was found to reproduce the result of a sectional method with better accuracy than a lognormal method. We simulated the isothermal decomposition of ferrocene and the consequent formation of iron particles with MOMIC; the computed diameter of iron particles agreed reasonably well with experimental data. Analytical solutions for particle diameter were obtained as a function of residence time, assuming monodisperse particles and a constant collision frequency function. They compared very well to the numerical prediction by a monodisperse model and reasonably well to that by MOMIC, suggesting the analytical solutions to be a simple first approximation in assessing the performance of CVD and flame synthesis methods of producing CNTs.  相似文献   

12.
Carbon nanotubes (CNTs) are nanomaterials with many potential applications due to their excellent mechanical and physical properties. In this paper, we proposed that CNTs with clamped boundary condition under axial tensile loads were considered as CNT-based resonators. Moreover, the resonant frequencies and frequency shifts of the CNTs with attached mass were investigated based on two theoretical methods, which are Euler–Bernoulli beam theory and Rayleigh’s energy method. Using the present methods, we analyzed and discussed the effects of the aspect ratio, the concentrated mass and the axial force on the resonant frequency of the CNTs. The results indicate that the length of CNTs could be easily changed and could provide higher sensitivity as nanomechanical mass sensor. Moreover, the resonant frequency shifts of the CNT resonator increase significantly with increasing tensile load acting on the CNTs.  相似文献   

13.
The effects of total CH4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm2.  相似文献   

14.
This work examines the recent developments in non-traditional catalyst-assisted chemical vapour deposition of carbon nanotubes (CNTs) with a view to determining the essential role of the catalyst in nanotube growth. A brief overview of the techniques reliant on the structural reorganization of carbon to form CNTs is provided. Additionally, CNT synthesis methods based upon ceramic, noble metal, and semiconducting nanoparticle catalysts are presented. Experimental evidence is provided for CNT growth using noble metal and semiconducting nanoparticle catalysts. A model for CNT growth consistent with the experimental results is proposed, in which the structural reorganization of carbon to form CNTs is paramount.  相似文献   

15.
Supercapacitor (SC) electrodes fabricated with the combination of carbon nanotubes (CNTs) and metal oxides are showing remarkable advancements in the electrochemical properties. Herein, NiO decorated CNT/ZnO core-shell hybrid nanocomposites (CNT/ZnO/NiO HNCs) are facilely synthesized by a two-step solution-based technique for the utilization in hybrid supercapacitors. Benefitting from the synergistic advantages of three materials, the CNT/ZnO/NiO HNCs based electrode has evinced superior areal capacity of ~67 µAh cm−2 at a current density of 3 mA cm−2 with an exceptional cycling stability of 112% even after 3000 cycles of continuous operation. Highly conductive CNTs and electrochemically active ZnO contribute to the performance enhancement. Moreover, the decoration of NiO on the surface of CNT/ZnO core-shell increases the electro active sites and stimulates the faster redox reactions which play a vital role in augmenting the electrochemical properties. Making the use of high areal capacity and ultra-long stability, a hybrid supercapacitor (HSC) was assembled with CNT/ZnO/NiO HNCs coated nickel foam (CNT/ZnO/NiO HNCs/NF) as positive electrode and CNTs coated NF as negative electrode. The fabricated HSC delivered an areal capacitance of 287 mF cm−2 with high areal energy density (67 µWh cm−2) and power density (16.25 mW cm−2). The combination of battery type CNT/ZnO/NiO HNCs/NF and EDLC type CNT/NF helped in holding the capacity for a long period of time. Thus, the systematic assembly of CNTs and ZnO along with the NiO decoration enlarges the application window with its high rate electrochemical properties.  相似文献   

16.
Concern over the health effects from the inhalation of carbon nanotubes (CNTs) has been building for some time, and adverse health effects found in animal studies include acute and chronic respiratory damage, cardiac inflammation, and cancer including mesothelioma, heretofore only associated with asbestos exposure. The strong animal evidence of toxicity requires that the occupational hygiene community develops strategies for reducing or eliminating worker exposures to CNTs; part of this strategy involves the setting of occupational exposure limits (OELs) for CNTs. A number of government agencies and private entities have established OELs for CNTs; some are mass-based, while others rely on number concentration. We review these various proposed standards and discuss the pros and cons of each approach. We recommend that specific action be taken, including intensified outreach to employers and employees concerning the potential adverse health effects from CNT inhalation, the development of more nuanced OELs that reflect the complex nature of CNT exposure, a broader discussion of these issues among all interested parties, and further research into important unanswered questions including optimum methods to evaluate CNT exposures. We conclude that current animal toxicity evidence suggests that strong action needs to be taken to minimize exposures to CNTs, and that any CNT OEL should be consistent with the need to minimize exposures.  相似文献   

17.
Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4–6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.  相似文献   

18.
The focusing of atomic and molecular particles near the nanotube axis using a model of a carbon nanotube (CNT) with discrete arrangement of atoms in its wall is studied. The degree of focusing of channeling particles in CNTs depends not only on the diameter of the CNTs, but also on its chirality. It is shown that the concentration of channeling particles in the tube’s central part is higher for chiral nanotubes.  相似文献   

19.
As indicated by theory and experimental measurements individual carbon nanotubes (CNTs) have very high values of thermal conductivity. One of the challenges is to achieve high thermal conductivity in macroscopic assemblies of CNTs such as fibres, films and composites, paving the way to a wide range of applications. CNT fibres have tremendous potential in succeeding as the future materials for a variety of applications when properties at the nanoscale are translated to their macroscopic assemblies. In this paper we report the measurements of thermal conductivity of continuously spun CNT fibres and its dependence on temperature. Thermal conductivity measurements were performed using in-house built temperature sensing microscope probe. Specific thermal conductivity of CNT fibres showed an order of magnitude advantage over the traditional materials used for heat dissipation.  相似文献   

20.
The purpose of this project is to investigate the characterization of carbon nanotube (CNT) thin-film transistors based on two solution-based fabrication methods: dielectrophoretic deposition of aligned CNTs and self-assembly of random-network CNTs. The electrical characteristics of aligned and random-network CNT transistors are studied comparatively. In particular, the selection effect of metallic and semiconducting CNTs in the dielectrophoresis process is evaluated experimentally by comparing the output characteristics of the two transistors. Our results demonstrate that the self-assembly method produces a stronger field effect with a much higher on/off ratio (I on /I off ). This phenomenon provides evidence that the metallic CNTs are more responsive to dielectrophoretic forces than their semiconducting counterparts under common deposition conditions. In addition, the nanotube–nanotube cross-junctions in random-network CNT films create additional energy barriers and result in a reduced electric current. Thus, additional consideration must be applied when using different fabrication methods in building CNT-based electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号