首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron》2019,75(33):4444-4450
Novel 3,7-bis(dialkylaminoacetyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonanes were synthesized, which can undergo conformational reorganization under the change of solvent polarity, protonation (the change of pH) or complexation with LaCl3. These compounds are capable of being embedded into the liposomal membranes and can serve as molecular switches for the development of stimulus-sensitive liposomal containers.  相似文献   

2.
《Mendeleev Communications》2023,33(2):221-224
Small anionic liposomes were electrostatically adsorbed on the surface of larger cationic liposomes thus forming multi- compartment complexes composed exclusively of natural and synthetic lipids. The complexes contained two dozen anionic liposomes per a single cationic liposome and showed low cytotoxicity and ability to enzyme-induced bio-degradation. The liposomal multi-compartment complexes demonstrate great application potential as containers for drug encapsulation and delivery.  相似文献   

3.
Amphiphilic homopolymers containing a hydrophilic and a hydrophobic functionality in each monomer unit have been shown to form polar or apolar containers depending on the solvent environment. When presented with a mixture of solvents, these polymeric containers are capable of releasing certain guest molecules. The fundamental mechanism behind these properties is investigated, and the utility of these assemblies in separations has been demonstrated with an example.  相似文献   

4.
Stimuli‐responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n ]uril (CB[n ]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5–6.5). These containers retain the excellent recognition properties of CB[n ]‐type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine‐tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH.  相似文献   

5.
In recent decades the use of liposomal preparations as drug delivery systems has become very attractive in pharmaceutical development. Therefore, thorough characterization and quantification of the lipids which form liposomes is wished from both investigators and regulatory authorities when the application in humans is being considered. In this study a new HPLC method for the detection of lipids in liposomal formulations was established using corona charged aerosol detection (CAD) which has the advantage to be independent of the chemical properties of the analytes. The superiority of this method over UV detection was demonstrated. Compared to UV detection no absorption effects of the organic solvent in the mobile phase interfering with the lipid signals were observed with CAD. CAD showed good linearity (R2 > 0.990) for all liposomal compounds. The acceptance criteria for precision including repeatability were met. The average recovery for each of the excipients of the liposomal formulation was in the range of 90.0–110%.  相似文献   

6.
Matrix metalloproteinases (MMPs) constitute a class of extracellular-matrix-degrading enzymes overexpressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report the results of our mechanistic studies of the MMP-9-triggered release of liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing circular dichroism (CD) spectroscopy, we demonstrated that the lipopeptides, when incorporated into liposomes, are demixed in the lipid bilayers and generate triple-helical structures. MMP-9 cleaves the triple-helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple-helical peptides, fail to release the contents from the liposomes. We also observed that the rate and extent of release of the liposomal contents depend on the mismatch between the acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. CD spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides.  相似文献   

7.
The suitability of graphite of spectral quality as a sample container in short irradiations for neutron activation analysis has been investigated. The material is found to be a viable alternative to polyethylene containers especially in high flux irradiation positions where the properties of the latter deteriorate as a result of high neutron and gamma dose rates. Examples of application are demonstrated in epithermal neutron irradiations of biological materials and the accuracy and precision of the determinations were assessed.  相似文献   

8.
Adsorption of phospholipid (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) and formation of a surface phase at the oil-water interface has been followed by using ellipsometry. The properties of the interfacial phase were found to depend strongly on whether phospholipid was added to the oil phase or to the aqueous phase as liposomal structures. In the latter case a monolayer formed, while if the phospholipid was supplied from the oil phase a lamellar phase appeared at the interface. The effect on the stabilizing surface phase of a surface-active protein (beta-lactoglobulin) was also investigated. The observations are important for understanding stabilizing properties of surface-active compounds commonly used to stabilize emulsions. In addition it has been demonstrated that ellipsometry can be used to study the initial process when a two-phase system consisting of a water and an oil phase is transformed into a three phase system or eventually to a one-phase system.  相似文献   

9.
We constructed a supramolecular system on a liposomal membrane that is capable of activating an enzyme via DNA hybridization. The design of the system was inspired by natural signal transduction systems, in which enzymes amplify external signals to control signal transduction pathways. The liposomal membrane, providing a platform for the system, was prepared by the self-assembly of an oligonucleotide lipid, a phospholipid and a cationic synthetic lipid. The enzyme was immobilized on the liposomal surface through electrostatic interactions. Selective recognition of DNA signals was achieved by hybridizing the DNA signals with the oligonucleotide lipid embedded in the liposome. The hybridized DNA signal was sent to the enzyme by a copper ion acting as a mediator species. The enzyme then amplified the event by the catalytic reaction to generate the output signal. In addition, our system demonstrated potential for the discrimination of single nucleotide polymorphisms.  相似文献   

10.
A formulation of nifedipine tablets was prepared in the present research. The tablets were conditioned in amber-colored glass containers and placed in a climatized room at 40°C and relative humidity of 75% for 180 days. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used in order to evaluate the thermal properties of nifedipine, the excipients and two well-known nifedipine degradation products. The results demonstrated that there is no evidence on the interaction between nifedipine and excipients, or degradation products.  相似文献   

11.
Liposomes represent promising carriers for drug delivery applications. To maximize this potential, there has been significant interest in developing liposomal systems encapsulating molecular cargo that are highly stable until their contents are released remotely in a controlled manner. Herein, we describe the design, synthesis, and analysis of a photocleavable analogue of the ubiquitous lipid phosphoatidylcholine (PC) for the development of highly stable and controllable photodisruptable membranes. Our strategy was to develop a lipid that closely mimics the structure of PC to optimize favorable properties including biocompatibility and stability of subsequent liposomes when mixed with lipids possessing a broad range of physicochemical properties. Thus, NB‐PC was designed, which contains a photocleavable 2‐nitrobenzyl group embedded within the acyl chain at the sn‐2 position. Following the synthesis of NB‐PC , liposome disruption efficacy was evaluated through photolysis studies involving the detection of nile red release. Studies performed using a range of liposomes with different percentages of NB‐PC , PC, phosphatidylethanolamine (PE), cholesterol, and polyethylene glycol‐PE (PEG‐PE) demonstrated minimal background release in controls, release efficacies that correlate directly with the amount of NB‐PC incorporation, and that release is only minimally impacted by the inclusion of the lipids PE and cholesterol that possess disparate properties. These results demonstrate that the NB‐PC system is a highly stable, flexible, and tunable system for photoinitiated release from liposomal systems.  相似文献   

12.
The biological activities of phytochemical compositions in native and liposomal forms were compared, and membrane-stabilizing and antioxidant properties of phytocompositions, which have an anti-inflammatory and wound-healing action on the cell walls of protozoa, were studied.  相似文献   

13.
Aqueous dispersions of colloidal aggregates of liquid-crystalline lipid-water phases are described. The lamellar liquid-crystalline phase can form liposomal dispersions, which are wellknown from extensive studies of these particles in drug delivery. Less is known about dispersions of cubic and hexagonal phases. The preparation of such colloidal dispersions, their structure and physical properties are summerised. The dispersed cubic phase is compared to liposomal dispersions, and it is concluded that an important application of the cubic particles will involve encapsulation of proteins and protection of their native conformation.  相似文献   

14.
We disclose the results of our investigations on the influence that the insertion method of aryl-extended calix[4]pyrrole into liposomal membranes exerts on their properties as anion carriers. We use the standard HPTS assay to assess the transport properties of the carriers. We show that the post-insertion of the carrier, as DMSO solution, assigns better transport activities to the “two-wall” α,α-aryl-extended calix[4]pyrrole 1 compared to the “four-wall” α,α,α,α-counterpart 2 . Notably, opposite results were obtained when the carriers were pre-inserted into the liposomal membranes. We assign this difference to an improved incorporation of carrier 2 into the membrane when delivered by the pre-insertion method. On the other hand, carrier 1 shows comparable levels of transport independently of the method used for its incorporation. Thus, an accurate comparison of the chloride transport activities featured by these two carriers demands their pre-incorporation in the liposomal membranes. In contrast, using the lucigenin assay with the pre-insertion method both carriers displayed similar transport efficiencies.  相似文献   

15.
A Pep-1 peptide-modified liposomal (Pep1-Lipo) carrier system was investigated to increase the intracellular delivery of gold nanoparticles (Au NPs). Au NPs with a mean diameter of 13 nm were successfully encapsulated into the inner aqueous compartment of the novel carrier using an ethanol injection technique, reserving the distinctive optical characteristics of the surface plasmon resonance peak around 530 nm. The Au NP-loaded liposomal carrier was physically characterized as 150-170 nm in size and 45 mV in zeta potential. Dark field microscopic observation demonstrated that in vitro cellular association and/or translocation of the nanoprobes into the cells was increased by Pep1-Lipo carriers compared to bare Au NPs. In conclusion, this novel liposomal formulation is a promising platform for the intracellular delivery of metallic nanoprobes including Au NPs.  相似文献   

16.
Release of calcein and griseofulvin (GRF) from control (gels in which solutes are dissolved in) and liposomal gels was studied using agarose-assisted immobilization as a technique to separate gels from drug-receptor compartments. Liposomes composed of phosphatidylcholine (PC) or distearoyl-glycero-PC and cholesterol (DSPC/Chol), and incorporating calcein or GRF were prepared by thin film hydration. After cleaning the liposomes they were dispersed in different hydrogels (carbopol 974 [1, 1.5 or 2% (w/w)], hydroxylethyl-cellulose (HEC) [4% (w/w)], or a mixture of the two), and release of calcein or GRF was followed by fluorescence or photometric technique, respectively. Results show that calcein release from liposomal gels is slower compared to control gels, and can be further retarded by using rigid-membrane liposomes (faster release from PC-liposome compared to DSPC/Chol-liposome gels). Additionally, calcein release is not affected by the lipid amount loaded (in the range from 2 to 8 mg/ml), therefore solute loading can be controlled according to needs.

Oppositely, GRF release from liposomal gels is determined by drug loading. At high drug loading levels (compared to GRF aqueous solubility), GRF is released with constant rate from liposomal gels irrespective of liposome type (PC or DSPC/Chol). Thereby, for amphiphilic/lipophilic drugs, drug properties (solubility, log P) determine the system behavior.

Calcein and GRF release from control carbopol gels is faster compared to HEC and mixture gels. The same is true for calcein in liposomal gels. Carbopol gel rheological properties were found to be significantly different (compared to the other gels), implying that these characteristics are important for drug diffusion from gels.  相似文献   


17.
Synthetic access to multiple surface decorations are a bottleneck in the development of liposomes for receptor mediated targeting. This opens a complex multiparameter space, exploration of which is severely limited in terms of sample numbers and turnaround times. Here, we unlock this technological barrier by a combination of a milligram‐scale liposome formulation using dual centrifugation and orthogonal click chemistry on the liposomal surface. Application of these techniques to conceptually new amphiphilic compounds, which feature norbornene and alkyne groups at the apex of sterically stabilizing, hyperbranched polyglycerol moieties, revealed a particular influence of the membrane anchor of functional amphiphiles. Folic acid residues clicked to cholesterol‐based amphiphiles were inefficient in folate‐mediated cell targeting, while dialkyl‐anchored amphiphiles remained stable in the liposomal membrane and imparted efficient targeting properties. These findings are of specific importance considering the popularity of cholesterol as a lipophilic anchor.  相似文献   

18.
Various methods of construction of liposomal nanocontainers are studied. Parameters of liposomes are determined. Advantages of phase transformation method are demonstrated. The routes of liposome delivery to the organism are determined.  相似文献   

19.
Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.  相似文献   

20.
Making single-walled carbon nanotubes (SWNTs) soluble in water is a challenging first step to use their remarkable electronic and optical properties in a variety of applications. We report that acyclic cucurbit[n]uril molecular containers 1 and 2 selectively solubilize small-diameter and low chiral angle SWNTs. The selectivity is tunable by increasing the concentration of the molecular containers or by adjusting the ionic strength of the solution. Even at a concentration 1000 times lower than typically required for surfactants, the molecular containers render SWNTs soluble in water. Molecular mechanics simulations suggest that these C-shaped acyclic molecules complex the SWNTs such that a large portion of nanotube sidewalls are exposed to the external environment. These "naked" nanotubes fluoresce upon patching the exposed surface with sodium dodecylbenzene sulfonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号