首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In flame spray pyrolysis (FSP), the generation of uniform nanoparticles can be quite challenging due to difficulties in controlling droplet sizes during liquid spraying and uneven flame temperature. Here, we report a method to produce relatively uniform nanocrystals of a Tb3+ doped Y2O3 phosphor. In ethanol, metal nitrate precursors were simply mixed with organic surfactants to form a homogeneous solution which was then subjected to FSP. Depending on relative concentrations of the surfactant (oleic acid) to the metal precursors (yttrium and terbium nitrates), different sizes and morphologies of Y2O3:Tb3+ particles were obtained. By adjusting the surfactant concentration, Y2O3:Tb3+ crystals as small as 20~25 nm were acquired. X-ray diffraction and transmittance electron microscopy were used to prove that as-synthesized nanoparticles were highly crystalline due to the high temperature of FSP. X-ray photoelectron spectroscopy revealed that terbium dopants were well distributed throughout Y2O3 particles and a small portion of carbonate impurities were remained on the surface of particles, presumably originated from incomplete combustion of the organic surfactants. Photoluminescence (PL) spectra of Y2O3:Tb3+ nanocrystals exhibited a green light emission ensuring that the terbium doping was successfully occurred. However, when post-annealing was performed on the nanocrystals, their PL was dramatically enhanced indicating that quenching centers such as carbonate impurities and surface defects may have been removed by the annealing process. Owing to the continuous processability of FSP, this current method can be a practical way to produce nanoparticles in a large quantity. The obtained Y2O3:Tb3+ nanocrystals were used to fabricate a transparent film with poly-ethylene-co-vinyl acetate (poly-EVA) polymer, which was suitable for a spectral converting layer for a solar cell.
Graphical abstract ?
  相似文献   

2.
One-dimensional Ce3+-doped Li4Ti5O12 (Li4Ti5?x Ce x O12, x?=?0, 0.01, 0.02, and 0.05) sub-microbelts with the width of approximately 500 nm and thickness of about 200 nm have been synthesized via the facile electrospinning method. The structure and morphology of the as-prepared samples are characterized by XRD, TEM, SEM, BET, HRTEM, XPS, and AFM. Importantly, one-dimensional Li4Ti5O12 sub-microbelts can be well preserved with the introduction of Ce3+ ions, while CeO2 impurity is obtained when x is greater than or equal to 0.02. The comparative experiments prove that Ce3+-doped Li4Ti5O12 electrodes exhibit the brilliant electrochemical performance than undoped counterpart. Particularly, the reversible capacity of Li4Ti4.98Ce0.02O12 electrode reaches up to 139.9 mAh g?1 and still maintains at 132.6 mAh g?1 even after 100 cycles under the current rate of 4 C. The superior lithium storage properties of Li4Ti4.98Ce0.02O12 electrode could be attributed to their intrinsic structure advantage as well as enhanced overall conductivity.
Graphical abstract ?
  相似文献   

3.
Novel feather duster-like nickel sulfide (NiS) @ molybdenum sulfide (MoS2) with hierarchical array structure is synthesized via a simple one-step hydrothermal method, in which a major structure of rod-like NiS in the center and a secondary structure of MoS2 nanosheets with a thickness of about 15–55 nm on the surface. The feather duster-like NiS@MoS2 is employed as the counter electrode (CE) material for the dye-sensitized solar cell (DSSC), which exhibits superior electrocatalytic activity due to its feather duster-like hierarchical array structure can not only support the fast electron transfer and electrolyte diffusion channels, but also can provide high specific surface area (238.19 m2 g?1) with abundant active catalytic sites and large electron injection efficiency from CE to electrolyte. The DSSC based on the NiS@MoS2 CE achieves a competitive photoelectric conversion efficiency of 8.58%, which is higher than that of the NiS (7.13%), MoS2 (7.33%), and Pt (8.16%) CEs under the same conditions.
Graphical abstract Novel feather duster-like NiS@MoS2 hierarchical structure array with superior electrocatalytic activity was fabricated by a simple one-step hydrothermal method.
  相似文献   

4.
Solution combustion synthesis (SCS) is an effective and rapid method for synthesizing nanocrystalline materials. However, the control over size, morphology, and microstructure are rather limited in SCS. Here, we develop a novel ultrasonic-assisted solution combustion route to synthesize the porous and nano-sized Na3V2(PO4)3/C composites, and reveal the effects of ultrasound on the structural evolution of NVP/C. Due to the cavitation effects generated from ultrasonic irradiation, the ultrasonic-assisted SCS can produce honeycomb precursor, which can be further transformed into porous Na3V2(PO4)3/C with reticular and hollow structures after thermal treatment. When used as cathode material for Na-ion batteries, the porous Na3V2(PO4)3/C delivers an initial discharge capacity of 118 mAh g?1 at 0.1 C and an initial coulombic efficiency of 85%. It can retain 93.8% of the initial capacity after 120 cycles at 0.2 C. The results demonstrate that ultrasonic-assisted SCS can be a new strategy to design crystalline nanomaterials with tunable microstructures.
Graphical abstract Porous and nano-sized Na3V2(PO4)3/C composites with reticular and hollow structures are synthesized by an ultrasonic-assisted solution combustion route due to the cavitation effects, and exhibit excellent electrochemical performance as cathode in sodium ion battery.
  相似文献   

5.
Perovskite solar cell is a kind of revolutionary investigation in the field of renewable energy which is capable of mitigates the deficiencies of silicon solar cell and its uprising efficiency can bring blessing to society. The presence of lead (Pb) in perovskite solar cell can make worst and negative impact on environment and is not desirable for our society. In this paper, general plans are anticipated by replacement of Pb with tin (Sn) in open atmosphere to fabricate the CH3NH3SnCl3 photovoltaic cells in chlorine (Cl)-rich environment. Excess uses of Cl has positive influences on morphological growth of the film and it also suppresses the oxidation tendency of tin (Sn) with existing oxygen in atmosphere and maintains same chemical atmosphere as bulk. Various characterization tools like X-ray diffraction, scanning electron microscope (SEM) have been used to study the effect of annealing temperature on crystal stricture, phase formation, impurities, and morphologies of the film. Finally, photovoltaic performance was reported using the solar simulator under 1.5 sun illumination.
Graphical abstract ?
  相似文献   

6.
In this paper, an efficient strategy for the synthesis of graphene nanobelt-titanium dioxide/graphitic carbon nitride (graphene-TiO2/g-C3N4) heterostructure photocatalyst was applied to fabricate a kind of visible-light-driven photocatalyst. The heterostructure shows higher absorption edge towards harvesting more solar energy compared with pure TiO2 and pure g-C3N4 respectively. Furthermore, the as-prepared graphene-TiO2/g-C3N4 heterostructure can show enhanced photocatalytic activity under visible-light irradiation. These outstanding performances of photocatalytic activities for graphene-TiO2/g-C3N4 composites can be attributed to the heterojunction interfaces which can separate the electron-hole pairs and impede the recombination of electrons and holes more efficiently. This study conclusively demonstrates a facile and environmentally friendly new strategy to design highly efficient graphene-TiO2/g-C3N4 heterostructure photocatalytic materials for potential applications under visible-light irradiation.
Graphical abstract ?
  相似文献   

7.
The effect of glass composition and the presence of CdSe/ZnSe nanoparticles (NPs) on the optical absorption and fluorescence of Sm-doped lead borate glasses are studied. Three sets of glass samples xPbO:(99.5-x) B2O3:0.5Sm2O3, x = 29.5–69.5 mol%, xPbO:(96.5-x) B2O3:0.5Sm2O3: 3CdSe/ZnSe, x = 36.5, and 56.5 mol% are prepared. NPs are grown by annealing these glasses just below the glass transition temperature. Average size of both types of NPs increases with annealing time; however, CdSe NPs grew to a larger size range (2 to 20 nm) compared to ZnSe NPs (1 to 16 nm). We analyzed the hypersensitive transition, intensity parameters, radiative transition probability, stimulated emission cross section (σp), and the area ratio of the electric dipole/magnetic dipole transitions of Sm3+. The intensity parameters show a minimum at 11 h annealing for 36.5 mol% and a maximum for the same annealing duration in 56.5 mol% PbO containing CdSe NPs. The σp for 56.5 mol% of PbO with CdSe NPs is found to be a maximum when the average NP size is around 14 nm. ZnSe NPs containing glasses also show significant changes in σp when the average particle size is ~16 nm, for 36.5 mol% PbO. Our results suggest that the optical properties of Sm3+ in lead borate glasses are sensitive to its electronic environment which can be modified by varying the base glass composition and/or incorporating large NPs of CdSe/ZnSe. The large σp values that we observe for some of the glass compositions make them attractive materials for photonic devices and photovoltaic applications.
Graphical abstract
  相似文献   

8.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

9.
In this paper, the green synthesis of fluorescent carbon dots (CDs) via one-step hydrothermal treatment of cornstalk was investigated. This approach is facile, economical, and effective. The obtained CDs with an average diameter of 5.2 nm possess many excellent properties such as emitting blue fluorescence under UV light (365 nm), high monodispersity, good stability, excellent water dispersibility, and absolute quantum yield of 7.6%. Then, these CDs were used as sensing probes for the detection of Fe2+ and H2O2 with detection limits as low as 0.18 and 0.21 μM, respectively. This sensing platform shows advantages such as high selectivity, good precision, rapid operation, and avoiding the precipitation of iron oxyhydroxides.
Graphical abstract ?
  相似文献   

10.
This paper reported a one-step synthesis of Ag2S/Ag@MoS2 nanocomposites and its applications in the surface-enhanced Raman scattering (SERS) detection and photocatalytic degradation of organic pollutants. The nanocomposites were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammograms (CV), the Brunauer-Emmett-Teller (BET), and Fourier transforms infrared spectra (FTIR). The AgNPs were uniformly dispersed on the MoS2 nanosheets and the particle size of the AgNPs was about 10–30 nm. These Ag2S/Ag@MoS2 nanocomposites offered sensitive SERS signals for the detection of R6G with the limit of detections as low as 10?10 M. The photocatalytic activity of the composite catalyst was studied by the degradation of methylene blue (MB) dye under light illumination. The apparent rate constant of MB degradation for the obtained catalyst could reach 6.6?×?10?2 min?1, indicating that the novel Ag2S/Ag@MoS2 nanocomposites can be explored for organic pollutant’s detection and degradation.
Graphical abstract One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications
  相似文献   

11.
Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.
Graphical abstract ?
  相似文献   

12.
Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.
Graphical Abstract Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles
  相似文献   

13.
A novel nano-size MnxOy/clinoptilolite catalyst of high activity for propane-SCR reaction of NOx at low temperatures has been synthesized by a hydrothermal method in a temperature range of 80–180 °C. The optimum synthesis temperature resulting in maximum NOx conversion was 150 °C. An optimum manganese oxide loading of 0.2 wt.% results in the best catalytic behavior (71% NOx conversion). All catalysts exhibited an optimal propane-SCR reaction temperature of 200 °C. The optimum catalyst produces no detectable CO (GHSV 27,000 h) at 200 °C. Manganese in the optimum catalyst exists as Mn2+ (37.8%), Mn3+ (14.2%), and Mn4+ (48%).
Graphical abstract Flake-like manganese oxide nanostructures (indicated by an arrow in the TEM picture) next to the clinoptilolite zeolite sheet-like crystals result in a promising low-temperature propane-selective catalytic reduction of NOx.
  相似文献   

14.
CeO2 and Fe2O3 co-modified titanate nanosheet (Fe2O3/CeO2@TNS) was prepared by one-pot hydrothermal method; the photocatalyst exhibited large surface area with CeO2 and Fe2O3 particles well dispersed on the surface. The results of XRD, BET, and Raman proved that the CeO2 and Fe2O3 introduced in the TNS influenced its structure evolution from 3D to 2D. The modification resulted in a shift of the absorption edge toward a longer wavelength and the band gap reduced to 2.87 eV. The three-component systems performed excellent photocatalytic activity and cycle stability on phenol and methyl blue (MB) solution under sunlight; nearly total phenol and MB were degraded in dozens of minutes. And the reaction rate constant (K) of Fe2O3/CeO2@TNS on phenol degradation was 1.77, 3.25, 4.88, and 13-fold of Fe2O3@TNS, CeO2@TNS, bare TNS, and P25, respectively. The enhanced photocatalytic activity could be ascribed to the efficient separation of photogenerated pairs through the formation of tandem n-n-n heterojunction among the three-component systems. This work will be useful for the design of other tandem n-n-n heterojunction photocatalytic systems for application in energy conversion and environmental remediation.
Graphical abstract ?
  相似文献   

15.
In this study, the magnetically recyclable Fe3O4@C/BiOBr heterojunction with enhanced visible light-driven photocatalytic ability was obtained by two-step solvothermal method. The phase, morphology, and structure of the samples were investigated by XRD, FESEM, HRTEM, and XPS. The Fe3O4@C/BiOBr heterojunction was composed of Fe3O4@C sphere and BiOBr microsphere with diameters of 200 nm and 1000 nm, respectively. The photocatalytic performance of Fe3O4@C/BiOBr composite for RhB was examined under visible light irradiation. The photocatalytic activity of Fe3O4@C/BiOBr composite was much higher than that of pure BiOBr and Fe3O4@C. After 35 min of irradiation, 97% of RhB could be removed with the Fe3O4@C/BiOBr photocatalyst. Based on radical trapping experiments of active species, the mechanism of enhanced photocatalytic performance was proposed. In addition, the superparamagnetic property of the photocatalyst not only allows its easy recyclability by an external magnetic field but also maintains high photocatalytic activity after five cyclic experiments.
Graphical abstract ?
  相似文献   

16.
Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals.
Graphical abstract ?
  相似文献   

17.
Addition reaction between C60 and ethylenediamine occurred at room temperature in an ambient condition. C60-ethylenediamine adduct particles were prepared by mixing toluene solutions of C60 and ethyelenediamine. Average diameter of the C60-ethylenediamine adduct particles was changed non-linearly according to the reaction time, which were observed using transmission electron microscopy. Early stage of the reaction, the diameter of the adduct particles was changed from about 250 to about 430 nm. Then, the size of the adduct particles was converged to about 300 nm. During this addition reaction, the crystalline sizes of adduct particles were constant about 2–3 nm, regardless of the sizes of the adduct particles, which were determined by X-ray diffraction measurement.
Graphical abstract ?
  相似文献   

18.
This work reported a novel kind of CdTe quantum dot (QD) decorated mesoporous SiO2 (m-SiO2/QD) hybrid hollow nanoparticles for carrying photodynamic therapy (PDT) reagent. Both rod-like and spherical nanoparticles were prepared by using different shaped templates. Due to the porous shell and hollow interior, the hybrid m-SiO2/QD hollow nanorod with 360 nm long and 120 nm in diameter was selected for carrying zinc(II) phthalocyanine (ZnPc) photosensitizing molecules (61 mg/g) since the generated reactive 1O2 could be easily delivered out of the hollow particles through the porous shell (BET area 251 cm2/g). It was found that the m-SiO2/QD-ZnPc hollow nanorods exhibited a good PDT activity and showed effective photocytotoxicity for the cancer cells. Because of the porous nature, fluorescence characteristic, and excellent storage ability, the m-SiO2/QD hybrid hollow particles possessed broad potential in the fluorescent labeled PDT.
Graphic abstract m-SiO2/QD hybrid hollow particles with different morphologies could be successfully synthesized by using the templating method and they could be used as carriers for photodynamic therapy reagents.
  相似文献   

19.
Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] (1) and/or [CuI(mdpa)2][CuICl2] (2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)–S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals.
Graphical abstract Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3. Gopinath Mondal, Ananyakumari Santra, Sumanta Jana, Nimai Chand Pramanik, Anup Mondal and Pulakesh Bera
  相似文献   

20.
Rare-earth-based infinite coordination polymer (RE-ICP) spheres with diameters ranging from 50 nm to 2 μm have been prepared using meso-2,3-dimercaptosuccinic acid (DMSA) as ligand under hydrothermal conditions. RE2O2SO4 microspheres with similar morphology were obtained by calcining the corresponding RE-ICP spheres. However, as for Ce-ICP and Sc-ICP, CeO2 and Sc2O3 were obtained. The products were characterized using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy, laser Raman spectrometry, and energy-dispersive X-ray spectrum. Elemental analysis and inductive coupled plasma atomic emission spectrometer were adopted to study the composition of the Eu-ICP. To explore their potential applications, several samples of the products were selected and their properties were investigated. The Eu-ICP and Eu2O2SO4 microspheres give strong red emissions when excited with a 394-nm ultraviolet light. Furthermore, the Eu-ICP displays a high selectivity for Fe(III). The obtained CeO2 has a strong absorption in the UV region and the Gd2O2SO4 microspheres show paramagnetic behavior.
Graphical abstract A series of RE2O2SO4 microspheres were prepared using a coordination polymer precursor method.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号