首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a shock wave emerges from a pipe situated in a semibounded volume a system of waves arises between the end of the pipe and the bottom of the volume, and also in the gap between the pipe and the side walls of the volume. Paper [1] considers the propagation of a shock wave after emerging from the pipe until touching the side walls of the volume. The present paper considers the gas motion in a semibounded volume after the shock wave has traversed the volume and made contact with the side walls. In part 1 a physical model is constructed of the gas motion up to the time when the primary shock wave reaches the bottom of the volume. In part 2 relations are found which enable us to determine the stream parameters in the semibounded volume up to the time when the primary shock wave arrives at the bottom of the volume. Section 3 considers the motion of the reflected shock wave between the pipe and the side walls of the volume.  相似文献   

2.
The present paper discusses the one-dimensional unsteady-state flow of a gas resulting from the motion of a piston in the presence of weak perturbing factors, with which the investigation of the perturbed (with respect to the usual self-similar conditions) motion reduces to the solution of ordinary differential equations, is indicated. The distributions of the parameters of the gas between the piston and the shock wave are found. The conditions under which there is acceleration or slowing down of the shock front are clarified. As an example, this paper considers the unsteady-state motion of a conducting gas in a channel with solid electrodes under conditions where electrical energy is generated, and the flow of a gas taking radiation into account, under the assumption of optical transparency of the medium. The theory developed is used to solve the problem of the motion of a thin wedge with a high supersonic velocity in an external axial magnetic field, taking account of the luminescence of the layer of heated gas between the wedge and the shock wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 17–25, September–October, 1970.  相似文献   

3.
In the present paper, the problem of propagation of collapsing cylindrical shock wave in an ideal gas permeated by a transverse magnetic field with infinite electrical conductivity is investigated. Here it is assumed that the medium ahead of the shock front is uniform and at rest. Also, its counter pressure concerning the motion of the wave front is neglected. This problem admits a self similar solution of second kind. The similarity exponent has been computed by solving a nonlinear eigenvalue problem and integrating numerically the self-similar equations for various values of adiabatic heat exponent and Cowling number. Numerical computations have been performed to determine the flow field behind the shock wave. The influence of magnetic field strength and adiabatic heat exponent on the flow parameters for various cases is presented.  相似文献   

4.
5.
The detonation wave propagation in plane channels filled with a stoichiometric hydrogen-air mixture at rest under standard conditions is numerically modeled with account for the actual kinetics of the chemical interaction. The calculations show that the stable cellular structure of the detonation wave formed in a plane channel with parallel walls is not always uniquely determined by its width. The effect of transverse walls and sharp expansion of the channel on the propagation of the cellular detonation wave is studied. The conditions of conservation and restoration of detonation are determined.  相似文献   

6.
The time-dependent problem of rarefied gas flow into a vacuum from a plane long channel closed at one end is solved on the basis of the kinetic S-model. The effect of diffuse molecular reflection from the channel walls on the flow velocity and the process of channel cavity vacuumization is studied as a function of the channel length and the extent of gas rarefaction under the condition that the wall temperature is maintained to be constant. The kinetic equation is solved numerically using a conservative finite-difference method of the second order of accuracy in spatial coordinates. The possibility of simplification of the problem for long times by means of reduction to the diffusion process is considered.  相似文献   

7.
Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.  相似文献   

8.
A quantitative thermometry technique, based on planar laser-induced fluorescence (PLIF), was applied to image temperature fields immediately next to walls in shock tube flows. Two types of near-wall flows were considered: the side wall thermal boundary layer behind an incident shock wave, and the end wall thermal layer behind a reflected shock wave. These thin layers are imaged with high spatial resolution (15μm/pixel) in conjunction with fused silica walls and near-UV bandpass filters to accurately measure fluorescence signal levels with minimal interferences from scatter and reflection at the wall surface. Nitrogen, hydrogen or argon gas were premixed with 1–12% toluene, the LIF tracer, and tested under various shock flow conditions. The measured pressures and temperatures ranged between 0.01 and 0.8 bar and 293 and 600 K, respectively. Temperature field measurements were found to be in good agreement with theoretical values calculated using 2-D laminar boundary layer and 1-D heat diffusion equations, respectively. In addition, PLIF images were taken at various time delays behind incident and reflected shock waves to observe the development of the side wall and end wall layers, respectively. The demonstrated diagnostic strategy can be used to accurately measure temperature to about 60 μm from the wall.  相似文献   

9.
The salient features of detonation wave propagation in a supersonic flow of a stoichiometric hydrogen-air mixture in plane channels of both constant and variable cross-section are numerically investigated for the purpose of determining the conditions ensuring stabilized detonation. The propagation of a detonation wave formed in a variable-cross-section channel is studied. For different inflow Mach numbers the geometric parameters of a channel providing the detonation combustion stabilization are determined. An investigation of detonation wave stabilization in a supersonic flow of a combustible gas mixture in a plane channel with parallel walls using additional weak discharges is continued. The effects of the flow Mach number, the additional discharge energy, and the discharge location on detonation wave stabilization are studied.  相似文献   

10.
The time-dependent one-dimensional problem of the normal reflection of a shock wave propagating at constant velocity in a gas (vapor) at rest from the plane surface of its condensed phase under steady-state condensation-evaporation conditions on the interphase plane is considered within the framework of the kinetic equation for a monatomic gas with a model collision operator (S-model). The solution is obtained using a conservative second-order finite-difference method. Attention is concentrated on the steady-state regime of the condensation process. The effect of the condensation (evaporation) coefficient on the velocity of the reflected shock wave is studied.  相似文献   

11.
Two-dimensional steady rarefied-gas channel flow between two parallel walls, from an evaporating face to a perfectly absorbing plane end face, is studied. The vapor is considered to be a monatomic gas. The corresponding problem for the kinetic equation with collision integral in BGK form is formulated and solved numerically by two different finite-difference methods. Attention is focused on the calculation of the total gas flow rate through the channel cross-section. The structure of the gas channel flow as a function of the flow rarefaction, the channel length, and the ratio of the evaporation temperature to the wall temperature is studied.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 150–158, January–February, 1996.  相似文献   

12.
In this study, deposition of particles with diameters of 3, 5, and 10 nm in a finite-length heated channel flow is numerically studied under both molecular diffusion and thermophoretic effects. Two types of thermal conditions were examined. The first condition involved various inlet temperatures with a fixed wall temperature. The second condition involved various wall temperatures and a fixed inlet temperature. For a finite channel length, higher particle deposition can be obtained for the various inlet temperature and fixed wall temperature cases. However, for the same temperature ranges, complete particle collection on the wall can only be achieved under various wall temperatures and fixed inlet temperature cases when the channel length is long enough. This is because a temperature gradient appears in these cases. The temperature gradient in the various inlet wall temperatures and fixed wall temperature cases is zero when the flow is thermally fully developed.  相似文献   

13.
激波风洞内超燃冲压发动机三面压缩进气道流场实验观测   总被引:2,自引:0,他引:2  
主要进行了超燃冲压发动机三面压缩进气道的实验观测。利用来流马赫数4.5的直通式激波风洞,考察了三组具有不同压缩角度的进气道模型内部的流场情况。实验观测手段为油流法、丝线法和高速纹影,同时,辅以数值模拟以有助于流场细节分析。纹影照片展示了进气道内部以激波边界层相互作用为主要影响因素的流场复杂结构,数值模拟也显示了相近的结果。油流技术与丝线法显示了近壁面处的流动图像,照片中可见激波、分离线、再附线等分界线位置。根据实验结果,可以推测唇口激波与进气道内边界层的相互作用及其引起的壁面分离是影响进气道内流动的主要因素。同时,尝试了利用抽吸方法减弱激波与边界层相互作用诱发的壁面流动分离,并取得一定结果。  相似文献   

14.
A one-dimensional motion of an incompressible fluid (gas) through a fixed bed of a granular material under a short thermal pulse at the bed inlet is considered. An analytical dimensionless solution of the boundary-value problem is presented in quadratures. Specific features of the propagation of convective thermal waves due to the fluid (gas) flow are studied. The data on the propagation velocity, amplitude, temperature difference between the fluid (gas) and the bed, and the length of the zone of intense heat transfer are obtained. The examples of the analysis of a continuum flow in engineering apparatuses which use convective thermal waves are presented.  相似文献   

15.
The equations of one-dimensional (with a plane of symmetry) adiabatic motion of an ideal gas are transformed to a form convenient for studying flows between a moving piston and a shock wave of variable intensity. The solution is found for the equations of a motion containing a shock wave which propagates through a quiescent gas with variable initial density and constant pressure. This solution contains four arbitrary constants and, in a particular case, gives an example of adiabatic shockless compression by a piston of a gas initially at rest.  相似文献   

16.
A solution is given to the plane problem of the flow of a conducting gas across a homogeneous magnetic field in a magnetogasdynamic channel taking account of the Hall effect at small magnetic Reynolds numbers. The channel is formed by two long electrodes, and the cross section of the channel varies slightly and periodically along the gas flow. It is assumed that the electromagnetic forces are small. It is shown that the current distribution in the channel is nonuniform to a consider able degree and that inverse currents can form at the electrodes, with both subsonic and supersonic flows of the conducting gas. Transverse motion of the gas, due to a change in the cross section of the channel, leads to an increase of Joule energy losses. In [1] the current distribution was obtained in a flat channel formed by infinite dielectric walls, with the flow of a steady-state stream of plasma through the channel across a homogeneous magnetic field. With interaction between the flow and the magnetic field, closed current loops develop in the channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 26–33, November–December, 1970.  相似文献   

17.
The incompressible laminar flow of air and heat transfer in a channel with a backward-facing step is studied for steady cases and for pulsatile inlet conditions. For steady flows the influence of the inlet velocity profile, the height of the step and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsatile flow. It was found with amplitude of oscillation of one by Re=100 that the primary vortex breakdown through one pulsatile cycle. The wall shear rate in the separation zone varied markedly with pulsatile flows and the wall heat transfer remained relatively constant. The time-average pulsatile heat transfer at the walls was greater as with steady flow with the same mean Reynolds number.  相似文献   

18.
The problem of detonation initiation in a supersonic flow of a stoichiometric propane-air mixture occupying partially or completely the cross-section of a plane channel is considered. The initiation in the flow is produced by a step or a wall completely cutting off the flow. The study is conducted within the framework of one-stage combustion kinetics. A numerical method based on the Godunov scheme is employed. The critical conditions for detonation formation are determined in terms of the oncoming flow velocity. A previously unknown mechanism of detonation propagation is found; it is related with the presence of the combustible mixture in the wall layer under an inert gas layer. It is due to the formation of a complicated wave structure of the flow characterized by the penetration of a shock wave formed in the inert gas layer into a combustible mixture layer ahead of the detonation wave with the result that the latter layer is heated and ignited. The process as a whole is periodic in nature, as distinct from the conventional cellular detonation in a homogeneous fluid. Many problems arise in connection with the use of detonation in engines and other power plants. The most important among them are detonation excitation and stabilization in combustion chambers. The detonation initiation within a layer under conditions of unbounded space and a fluid at rest was experimentally investigated in [1]. In the case of a combustion chamber bounded in the transverse direction, some new effects accompanying the detonation might be expected.  相似文献   

19.
In a flow of plasma, set up by an ionizing shock wave and moving through a transverse magnetic field, under definite conditions there arises a gasdynamic shock wave. The appearance of such shock waves has been observed in experimental [1–4] and theoretical [5–7] work, where an investigation was made of the interaction between a plasma and electrical and magnetic fields. The aim of the present work was a determination of the effect of the intensity of the interaction between the plasma and the magnetic field on the velocity of the motion of this shock wave. The investigation was carried out in a magnetohydrogasdynamic unit, described in [8]. The process was recorded by the Töpler method (IAB-451 instrument) through a slit along the axis of the channel, on a film moving in a direction perpendicular to the slit. The calculation of the flow is based on the one-dimensional unsteady-state equations of magnetic gasdynamics. Using a model of the process described in [9], calculations were made for conditions close to those realized experimentally. In addition, a simplified calculation is made of the velocity of the motion of the above shock wave, under the assumption that its front moves at a constant velocity ahead of the region of interaction, while in the region of interaction itself the flow is steady-state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 86–91, January–February, 1975.  相似文献   

20.
A turbulent flow of a suspension of solid particles in a gas is considered. The suspension is located in a channel with permeable walls (the pressure at the left end face of the channel follows a sinusoidal law). The flow considered here reflects the principal features of the flow in the combustion chamber of a solid-propellant rocket motor. The unsteady flow of the gas suspension is described by using the Eulerian-Lagrangian approach. A stochastic variant of the discrete-trajectory approach is used for modeling the particle motion. The influence of the condensed phase on the turbulence characteristics and acoustic oscillations of the parameters of the working medium in the channel in the case of injection is discussed. The calculated results are compared with data obtained in a physical experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号