首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This tutorial review describes recent research directed towards the synthesis of polymer-based organic microporous materials termed Polymers of Intrinsic Microporosity (PIMs). PIMs can be prepared either as insoluble networks or soluble polymers with both types giving solids that exhibit analogous behaviour to that of conventional microporous materials such as activated carbons. Soluble PIMs may be processed into thin films for use as highly selective gas separation membranes. Preliminary results also demonstrate the potential of PIMs for heterogeneous catalysis and hydrogen storage.  相似文献   

2.
We developed a catalyst-free, atom-economical interfacial amino-yne click polymerization to in situ synthesize new aggregation-induced emission luminogen (AIEgen)-based free-standing porous organic polymer films at room temperature. The crystalline properties of POP films were confirmed by powder X-ray diffraction and high-resolution transmission electron microscopy. The good porosity of these POP films was proved by their N2 uptake experiments. The thickness of POP films can be easily regulated from 16 nm to ≈1 μm by adjusting monomer concentration. More importantly, these AIEgen-based POP films show bright luminescence with high absolute photoluminescent quantum yields up to 37.8 % and good chemical and thermal stability. The AIEgen-based POP film can encapsulate an organic dye (e.g., Nile red) to further form an artificial light-harvesting system with a large red-shift (Δλ=141 nm), highly efficient energy-transfer ability (ΦET=91 %), and high antenna effect (11.3).  相似文献   

3.
Novel types of microporous material are required for chemoselective adsorptions, separations and heterogeneous catalysis. This concept article describes recent research directed towards the synthesis of polymeric materials that possess microporosity that is intrinsic to their molecular structures. These polymers (PIMs) can exhibit analogous behaviour to that of conventional microporous materials, but, in addition, may be processed into convenient forms for use as membranes. The excellent performance of these membranes for gas separation and pervaporation illustrates the unique character of PIMs and suggests immediate technological applications.  相似文献   

4.
Porous organic polymers (POPs) have emerged as a novel class of porous materials that are synthesized by the polymerization of various organic monomers with different geometries and topologies. The molecular tunability of organic building blocks allows the incorporation of functional units for photocatalytic organic transformations. Here, we report the synthesis of two POP-based photocatalysts via homopolymerization of vinyl-functionalized diaryl dihydrophenazine (DADHP) monomer ( POP1 ) and copolymerization of vinyl-functionalized DADHP and 2,2′-bipyridine monomers ( POP2 ). The fluorescence lifetimes of DADHP units in the POPs significantly increased, resulting in enhanced photocatalytic performances over homogeneous controls. POP1 is highly effective in catalysing visible-light-driven C−N bond forming cross-coupling reactions. Upon coordination with Ni2+ ions, POP2-Ni shows strong synergy between photocatalytic and Ni catalytic cycles due to the confinement effect within the POP framework, leading to high efficiency in energy, electron, and organic radical transfer. POP2-Ni displays excellent activity in catalysing C−P bond forming reactions between diarylphosphine oxides and aryl iodides. They increased the photocatalytic activities by more than 30-fold in C−N and C−P cross-coupling reactions. These POP catalysts were readily recovered via centrifugal separation and reused in six catalytic cycles without loss of activities. Thus, photosensitizer-based POPs provide a promising platform for heterogeneous photocatalytic organic transformations.  相似文献   

5.
Mono- and alpha,omega-bis-styryl-oligo(oxyethylene glycol) ethers have been constructed in an efficient two-step synthesis. From these precursors, poly(oxyethylene glycol) polymer (POP) supports of varying monomer and cross-linker composition have been produced. The swelling properties and mass-solvent uptake of these novel materials have been evaluated in a variety of solvents, demonstrating that POP supports exhibit enhanced solvent compatibilities over the commercial resins TENTA-GEL, ARGO-GEL, and Merrifield's resin. The utility of POP supports in solid-phase organic chemistry has also been demonstrated successfully. It is anticipated that these high-loading polymeric supports will have generic application in the solid-phase synthesis of combinatorial libraries and the in situ screening of these libraries in the aqueous environment of a bioassay.  相似文献   

6.
Nucleosides are valuable biologically active compounds, which display antitumour and antiviral activities. Various types of bioactive nucleosides are designed to improve their therapeutic efficacy, However this strategy faces the difficult selectivity issues of nucleoside chemistry. Therefore, the goal of this review is to give an idea of the opportunities provided by biocatalyst CAL-B procedures in the preparation of different types of bioactive nucleoside compounds. The function of Candida Antarctica lipase-B (CAL-B) in organic synthesis is reviewed. This enzyme has been found to be a principally efficient and robust lipase catalyzing an unexpected variety of reactions including many different regio- chemo, and diastereo-selective synthesis. Moreover, the structure of Candida Antarctica lipase-B is an example of an enzyme for which its specificity has been predicted based on acylation and deacylation mechanism on substrates.  相似文献   

7.
Three new poly(p‐phenylenevinylene) derivatives—PO, POD, and POP—with oxadiazole and pyridine rings along the main chain were synthesized via Heck coupling. The polymers were amorphous and dissolved readily in common organic solvents. They showed relatively low glass‐transition temperatures (up to 42 °C) and satisfactory thermal stability. Solutions of the polymers emitted blue‐greenish light with photoluminescence (PL) emission maxima around 460 nm and PL quantum yields of 0.28–0.49. Thin films of the polymers displayed PL emission maxima at 461–521 nm, and their tendency to form aggregates was significantly influenced by the chemical structure. Light‐emitting diodes with polymers PO and POP, with an indium tin oxide/poly(ethylenedioxythiophene) (PEDOT)/polymer/Ca configuration, emitted yellow and green light, respectively, and this could be attributed to excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3212–3223, 2004  相似文献   

8.
The mechanism of facilitated transport of metal ions across polymer inclusion membranes (PIMs) is revised on the basis of transport flux measurements and of new data brought by techniques sensitive to local inter-molecular interactions and molecular diffusion. Cellulose triacetate (CTA) membranes built with two types of inclusion carriers: a liquid one Aliquat 336 and a crystalline one Lasalocid A, both able to carry metal ions across PIMs and supported liquid membranes (SLMs) made of the same components, have been compared. Both PIM systems show similar effects for what concern the need of a carrier threshold concentration for the occurrence of a transport flux across PIM as revealed by flux and fluorescence correlation spectroscopy (FCS) measurements, and the dependence of the chemical nature of plasticizers on the metal ion flux. These systems also present similar Raman and far IR signatures of structural evolution of PIMs with the increase of the carrier concentration within the CTA matrix.

All the presented data are interpreted as concern PIMs, according to an evolution of chemical interactions between components of the polymeric membrane able to lead to a phase transition. This phase transition type of the carrier-plasticized polymer system is induced by the increase of carrier concentration in the polymer chains. The PIM progressively organizes itself like a liquid SLM because of the enhancement of preferential solvent interactions between the carrier and the plasticizer.

The main conclusion of this study is that the classically adopted “hopping” transport mechanism between fixed carrier sites in a PIM does not apply to such carrier chemically unbound to polymer membrane systems.  相似文献   


9.
Xiao K  Liu Y  Qi T  Zhang W  Wang F  Gao J  Qiu W  Ma Y  Cui G  Chen S  Zhan X  Yu G  Qin J  Hu W  Zhu D 《Journal of the American Chemical Society》2005,127(38):13281-13286
We present the synthesis and characterization of a fused-ring compound, dithieno[2,3-d:2',3'-d']thieno[3,2-b:4,5-b']dithiophene (pentathienoacene, PTA). In contrast to pentacene, PTA has a larger band gap than most semiconductors used in organic field-effect transistors (OFETs) and therefore is expected to be stable in air. The large pi-conjugated and planar molecular structure of PTA would also form higher molecular orders that are conductive for carrier transport. X-ray diffraction and atomic force microscopy experiments on its films show that the molecules stack in layers with their long axis upright from the surface. X-ray photoelectron spectroscopy suggests that there are no chemical bonds at the PTA/Au interface. OFETs based on the PTA have been constructed, and their performances as p-type semiconductors are also presented. A high mobility of 0.045 cm(2)/V s and an on/off ratio of 10(3) for a PTA OFET have been achieved, demonstrating the potential of PTA for application in future organic electronics.  相似文献   

10.
The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.  相似文献   

11.
Covalent organic frameworks (COFs) have attracted attention due to their ordered pores leading to important industrial applications like storage and separation. Combined with their modular synthesis and pore engineering, COFs could become ideal candidates for nanoseparations. However, the fabrication of these microcrystalline powders as continuous, crack-free, robust films remains a challenge. Herein, we report a simple, slow annealing strategy to construct centimeter-scale COF films ( Tp-Azo and Tp-TTA ) with micrometer thickness. The as-synthesized films are porous (SABET=2033 m2 g−1 for Tp-Azo ) and chemically stable. These COFs have distinct size cut-offs (ca. 2.7 and ca. 1.6 nm for Tp-Azo and Tp-TTA , respectively), which allow the size-selective separation of gold nanoparticles. Unlike, other conventional membranes, the durable structure of the COF films allow for excellent recyclability (up to 4 consecutive cycles) and easy recovery of the gold nanoparticles from the solution.  相似文献   

12.
Conjugated small molecules are advanced semiconductor materials with attractive physicochemical and optoelectronic properties enabling the development of next-generation electronic devices. The charge carrier mobility of small molecules strongly influences the efficiency of organic and hybrid electronics based on them. Herein, we report the synthesis of four novel small molecules and their investigation with regard to the impact of molecular structure and thermal treatment of films on charge carriers’ mobility. The benzodithiophene-containing compounds (BDT) were shown to be more promising in terms of tuning the morphology upon thermal treatment. Impressive enhancement of hole mobilities by more than 50 times was found for annealed films based on a compound M4 comprising triisopropylsilyl-functionalized BDT core. The results provide a favorable experience and strategy for the rational design of state-of-the-art organic semiconductor materials (OSMs) and for improving their charge-transport characteristics.  相似文献   

13.
A family of naturally occurring mycobacterial phosphatidylinositol (PI) and its dimannosides (PIM(2), AcPIM(2), and Ac(2)PIM(2)) that all possess the predominant natural 19:0/16:0 phosphatidyl acylation pattern were prepared to study their mass spectral fragmentations. Among these, the first synthesis of a fully lipidated PIM (i.e., (16:0,18:0)(19:0/16:0)-PIM(2)) was achieved from (±)-1,2:4,5-diisopropylidene-d-myo-inositol in 16 steps in 3% overall yield. A key feature of the strategy was extending the utility of the p-(3,4-dimethoxyphenyl)benzyl protecting group for its use at the O-3 position of inositol to allow installation of the stearoyl residue at a late stage in the synthesis. Mass spectral studies were performed on the synthetic PIMs and compared to those reported for natural PIMs identified from a lipid extract of M. bovis BCG. These analyses confirm that fragmentation patterns can be used to identify the structures of specific PIMs from the cell wall lipid extract.  相似文献   

14.
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels–Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.  相似文献   

15.
Covalent organic frameworks (COFs) have attracted attention due to their ordered pores leading to important industrial applications like storage and separation. Combined with their modular synthesis and pore engineering, COFs could become ideal candidates for nanoseparations. However, the fabrication of these microcrystalline powders as continuous, crack‐free, robust films remains a challenge. Herein, we report a simple, slow annealing strategy to construct centimeter‐scale COF films ( Tp‐Azo and Tp‐TTA ) with micrometer thickness. The as‐synthesized films are porous (SABET=2033 m2 g?1 for Tp‐Azo ) and chemically stable. These COFs have distinct size cut‐offs (ca. 2.7 and ca. 1.6 nm for Tp‐Azo and Tp‐TTA , respectively), which allow the size‐selective separation of gold nanoparticles. Unlike, other conventional membranes, the durable structure of the COF films allow for excellent recyclability (up to 4 consecutive cycles) and easy recovery of the gold nanoparticles from the solution.  相似文献   

16.
Conjugated microporous polymers (CMPs), in which rigid building blocks form robust networks, are usually synthesized as insoluble and unprocessable powders. We developed a methodology using electropolymerization for the synthesis of thin CMP films. The thickness of these films is synthetically controllable, ranging from nanometers to micrometers, and they are obtained on substrates or as freestanding films. The CMP films combine a number of striking physical properties, including high porosity, extended π conjugation, facilitated exciton delocalization, and high‐rate electron transfer. We explored the CMP films as versatile platforms for highly sensitive and label‐free chemo‐ and biosensing of electron‐rich and electron‐poor arenes, metal ions, dopamine, and hypochloroic acid, featuring rapid response, excellent selectivity, and robust reusability.  相似文献   

17.
The synthesis of novel monomers based upon the rigid 1,1′-spiro-bis(1,2,4,5-tetrahydro-6,7-dihydroxynaphthalene) framework is reported. These monomers can be used for the synthesis of polymers of intrinsic microporosity (PIMs) due to their reactive catechol units and nonlinear shape, which introduces the necessary sites of contortion into the resulting PIM.  相似文献   

18.
The design and synthesis of a new porous organic polymer (POP) incorporated with cobalt carbonyl complexes through built‐in bipyridinic coordination sites for hydrogen storage are described. A thermal activation process was developed to remove the ligated carbonyl and carbon dioxide in order to expose the cobalt atomically inside of porous structure. Various spectroscopic and physical characterization techniques were used to study the coordinated Co sites and the POP's surface property. Upon thermal activation, this new cobalt‐containing POP showed improved hydrogen uptake capacity and isosteric heat of adsorption.  相似文献   

19.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three‐dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three‐dimensional organic polymers is challenging. Now, the synthesis of a three‐dimensional π‐conjugated porous organic polymer (3D p‐POP) using catalyst‐free Diels–Alder cycloaddition polymerization followed by acid‐promoted aromatization is presented. With a surface area of 801 m2 g?1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10?4 S cm?1 upon treatment with I2 vapor, the 3D p‐POP is the first member of a new class of permanently porous 3D organic semiconductors.  相似文献   

20.
Mycobacterium tuberculosis is the cause of the deadly human disease tuberculosis. In studies over the last 40 years it has been revealed that this organism possesses a complex cell wall including glycophospholipids such as the phosphatidylinositiol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM). These glycolipids all contain a common alpha-1,6-linked mannoside core, and the higher PIMs and LAM possess alpha-1,2-linked mannosyl residues. It has been shown that simple alpha-1,6-linked oligomannosides can act as substrates for alpha-1,6-mannosyltransferases in mycobacteria. Here we report a simple iterative synthesis of a series of hydrophobic octyl alpha-1,6-linked oligomannosides from mono- through to tetrasaccharides. We have utilized a single thioglycoside donor and alcohol acceptor. Further, we have developed conditions for the conversion of each of these compounds to the 6-deoxy congeners. Deoxygenation of the 6-position of the terminal mannosyl residue should prevent these compounds acting as substrates for the abundant alpha-1,6-mannosyltransferases in mycobacteria and should permit detection of the elusive alpha-1,2-mannosyltransferase activity responsible for elaboration of LM to mature LAM and the biosynthesis of the higher PIMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号