首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴毓林  陈耀全 《化学进展》1994,6(4):294-300
在21世纪即将来临之际,有机化学将面临生命科学、环境科学和材料科学越来越多的挑战。本文回顾了在分子识别指导下的有机分子的设计、合成和组装这个新领域的诞生和发展,认为这个领域将成为新世纪有机化学发展的一个重要方向。它的发展和应用不仅使得有机化学可能较好地面对新挑战,同时能推动有机合成化学自身的发展。  相似文献   

2.
The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost‐saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.  相似文献   

3.
高压化学     
高压化学在现代科学中占有重要的地位,并在过去二十几年中取得了快速的发展。本文简要介绍了高压化学及高压化学研究领域在诸多方面的研究进展,其中包括高压无机化学和高压有机化学,以及高压在化学合成和化学过程研究中的应用,展示了高压化学的研究现状及其在许多方面的应用前景。  相似文献   

4.
Organo-element polymers are a rapidly developing field of high molecular weight compounds. As A.N. Nesmeyanov points out, the organo-element polymer chemistry is the science lying between inorganic and organic chemistry, that is undoubtedly its positive factor, because this allows to prepare polymeric compounds combining positive properties of the compounds of these two fields. Due to this, many elements of the Periodic System capable of forming various polymeric compounds are widely investigated, and a number of organo-element polymers have already found practical application in many fields of modern engineering and national economy. It should be noted that at present already more than 75 elements have been used in synthesis of various high molecular weight organo-element compounds. Besides carbon, among these compounds hydrogen, oxygen and silicon are remarkable. Other elements only begin their way to the polymer field. The concept of raznozvennost (different-units structure) is of great importance for studying the synthesis and the properties of these polymers. This concept made it possible to clarify distinguishing role of anomalous units in determining the complex of physico-chemical properties of high molecular weight organo-element compounds. It is especially important to emphasize that among factors giving rise to anomalous units causing polymer raznozvennost the presence of stable isotope atoms arranged statistically in polymer macromolecules plays an essential role. The lecture is a general review of polymers by the groups of the Periodic System. It discusses the methods for synthesis of organo-element polymers used at the present time as well as perspective development of this field in the future.  相似文献   

5.
This review highlights the most recent advances in click chemistry associated with DNA.Cu[I]-catalyzed azides-alkynes Huisgen cycloadditions(CuAAC)and a strain-promoted alkyne-azide cycloaddition(SPAAC)are two popular click reactions that have great impact in DNA science.The simplicity,versatility,orthogonality,and high efficiency of click reaction along with a stable triazole product have been instrumental for the successful application of this reaction in the field of nucleic acid chemistry.CuAAC and SPAAC reactions have been widely used for DNA modification,including DNA labeling,metallization,conjugation,cross-linking,and ligation.Modified oligodeoxynucleotides obtained from click reaction have been extensively applied in the fields of drug discovery,nanotechnology,bio-conjugation,and material sciences,among others.The most recent advances in the synthesis and applications of clickable DNAs are discussed in detail in this article.  相似文献   

6.
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.  相似文献   

7.
A long-established area of scientific excellence in Europe, solid state chemistry has emerged in the US in the past two decades as a field experiencing rapid growth and development. At its core, it is an interdisciplinary melding of chemistry, physics, engineering, and materials science, as it focuses on the design, synthesis and structural characterization of new chemical compounds and characterization of their physical properties. As a consequence of this inherently interdisciplinary character, the solid state chemistry community is highly open to the influx of new ideas and directions. The inclusionary character of the field’s culture has been a significant factor in its continuing growth and vitality.This report presents an elaboration of discussions held during an NSF-sponsored workshop on Future Directions in Solid State Chemistry, held on the UC Davis Campus in October 2001. That workshop was the second of a series of workshops planned in this topical area. The first, held at NSF headquarters in Arlington, Virginia, in January of 1998, was designed to address the core of the field, describing how it has developed in the US and worldwide in the past decade, and how the members of the community saw the central thrusts of research and education in solid state chemistry proceeding in the next several years. A report was published on that workshop (J.M. Honig, chair, “Proceedings of the Workshop on the Present Status and Future Developments of Solid State Chemistry and Materials”, Arlington, VA, January 15–16, 1998) describing the state of the field and recommendations for future development of the core discipline.In the spirit of continuing to expand the scope of the solid state chemistry community into new areas of scientific inquiry, the workshop elaborated in this document was designed to address the interfaces between our field and fields where we thought there would be significant opportunity for the development of new scientific advancements through increased interaction. The 7 topic areas, described in detail in this report, ranged from those with established ties to solid state chemistry such as Earth and planetary sciences, and energy storage and conversion, to those such as condensed matter physics, where the connections are in their infancy, to biology, where the opportunities for connections are largely unexplored. Exciting ties to materials chemistry were explored in discussions on molecular materials and nanoscale science, and a session on the importance of improving the ties between solid state chemists and experts in characterization at national experimental facilities was included. The full report elaborates these ideas extensively.  相似文献   

8.
从不对称催化的角度总结了近年来碳硼成键反应的研究进展, 评述了这些反应各自的特点, 并对其未来研究进行了展望.  相似文献   

9.
The Part and the Whole. The principle of self-organization for the creation of functional units is not an invention of modern natural sciences. It was already a basic idea of the ancient philosophies in Asia and Europe: only the mutuality of the parts creates the whole and its ability to function. Translated into the language of chemistry this means: the self-organization of molecules leads to supramolecular systems and is responsible for their functions. Thermotropic and lyotropic liquid crystals are such functional units, formed by self-organization. As highly oriented systems, they exhibit new properties. The importance of lyotropic liquid crystals for the life sciences has been known for a long time. They are a prerequisite for the development of life and the ability of cells to function. In materials sciences this concept of function through organization led to the development of new liquid-crystalline materials. From the point of view of macromolecular chemistry, this review tries to combine these two different fields and especially hopes to stimulate their interaction and joint treatment. To exemplify this, the molecular architecture of polymeric organized systems will be discussed. Polymeric liquid crystals combine the ability to undergo spontaneous self-organization–typical of liquid-crystalline phases–with the polymer-specific property of stabilizing these ordered states. As new materials, polymeric liquid crystals have already been investigated intensively. As model systems for biomembranes as well as for the simulation of biomembrane processes, they so far have been little discussed. The intention of this review article is to show that polymer science is able to contribute to the simulation of cellular processes such as the stabilization of biomembranes, specific surface recognition, or even the “uncorking” of cells. Polymer science, having an old tradition as an inter-disciplinary field, can no longer restrict itself to common plastics. Attempts to reach new horizons have already begun. The borderland between liquid crystals and cells will certainly play an important role. Basic requirements to work in this frontier area between organic chemistry, membrane biology, life science, and materials science will be the delight in scientific adventures as well as the courage to go ahead. The most important prerequisite will be the willingness to cooperate with disciplines which so far have not really accepted each other. From this point of view, this review does not aim at giving defined answers. It wants instead to encourage the scientific venture: too often we cling to painfully acquired knowledge, fearing adventures.  相似文献   

10.
In 1751, the Swedish chemist Johan Gottschalk Wallerius first differentiated between “pure” and “applied” chemistry, a distinction which was quickly adopted by the other branches of science. Behind this was a new scientific concept of chemistry which emphasized the importance of applying chemistry's accumulated knowledge and its capabilities of providing for the general economic benefit. It also provided chemistry with a new position within the hierarchy of the sciences as well as with a new function in society. The reasons behind and causes of the change in scientific perspective associated with this concept point to the social and institutional conditions under which this field has developed into an independent academic discipline.  相似文献   

11.
Several important aspects are considered: the definition of analytical chemistry, the intercorrelation of this field and other sciences, the content of the theory of the discipline, and the internal structure of analytical chemistry. Attention is paid to the incentive for the development of analytical chemistry as a science. The ratio of basic and applied aspects is discussed. Finally the name of this branch of science is considered.  相似文献   

12.
EuCheMS—The European Association for Chemical and Molecular Sciences is a nonprofit association. Its objective is to promote cooperation in Europe between those nonprofit scientific and technical societies and professional institutions in the field of chemistry/chemical sciences whose membership consists largely of individual qualified chemists/chemical scientists and whose interests include the science and/or practice of chemistry/chemical sciences. It was founded in 1970 and currently has 50 member societies in 36 countries. Published in Russian Zhurnal in Analiticheskoi Khimii, 2007, Vol. 62, No. 4, pp. 441–444. The text was submitted by the authors in English.  相似文献   

13.
液晶的超分子系统及生物膜模拟   总被引:3,自引:0,他引:3  
闻建勋 《化学进展》1996,8(2):87-97
本文评述了自组织产生功能的原理及溶致性液晶对生命科学的重要意义。这些是生命发展及细胞产生功能的先决条件。在高分子材料科学中, 通过自组织作用产生功能的原理导致了新的液晶材料。分子的自组织作用形成超分子体系从而产生相应的功能。从高分子材料科学的观点出发, 我们尝试将这两个领域结合在一起, 并希望能促进它们之间的相互作用和联合处理。同时评述了液晶的超分子体系、生物膜模型, 高分子脂质体及其在化学与生物医学方面的应用。如果双分子层的组装概念能更一般地延伸到有机介质, 那么一种全新的化学分支将会产生。  相似文献   

14.
There is widespread recognition that the use of energy in the twenty-first century must be sustainable. Because of its extraordinary flexibility, silica sol–gel chemistry offers the opportunity to create the novel materials and architectures which can lead to significant advances in renewable energy and energy storage technologies. In this paper, we review some of the significant contributions of silica sol–gel chemistry to these fields with particular emphasis on electrolytes and separators where sol–gel approaches to functionalization and encapsulation have been of central importance. Examples are presented in the areas of dye-sensitized solar cells, biofuel cells, proton exchange membrane fuel cells, redox flow batteries and electrochemical energy storage. Original work is also included for the sol–gel encapsulation of a room temperature ionic liquid to create a solid state electrolyte for electrochemical capacitors. In view of the critical importance of energy and the versatility of the sol–gel process, we expect the sol–gel field to play an increasingly important role in the development of sustainable energy generation and storage technologies.  相似文献   

15.
Beretta M 《Ambix》2011,58(3):257-276
Throughout the nineteenth century and the first half of the twentieth century, many distinguished chemists attributed an important, at times crucial, role to the historical narrative. When the first professional histories were published during the nineteenth century, their role was intimately interwoven with the identity of chemistry, a science that in spite (or because) of its rapidly growing importance in the industrialisation of Europe, did not have the same reputation as either the exact sciences or the medical-biological disciplines. With the works by Berthelot, Lippmann, and Mieli, the history of chemistry focused on its rich and varied documentary sources. The histories of chemistry produced during this period set the ground for a variety of approaches that reflect, to a large degree, the main currents of old and recent history of science. Moreover, historians of chemistry, both continental and Anglo-American, had a prominent role in establishing the history of science as an independent discipline.  相似文献   

16.
Compounds combining phosphine and carboxamide moieties in their molecules have developed virtually unnoticed into a specific class of highly structurally versatile and tuneable donor molecules finding manifold use in various fields, particularly in coordination chemistry, biomedical sciences and in catalysis. In the latter field, some phosphinoamides became the real privileged ligands and an indispensable part of a standard toolbox for synthetic chemists. This critical review aims to give an overview of the multifaceted chemistry of such compounds, paying attention to both the fundamentals and recent developments in this continuously expanding field.  相似文献   

17.
Summary Analytical chemistry is a discipline which has a large impact in other fields of chemistry and natural sciences as well as in technology and society. Traditionally, analytical chemistry has been grouped together with inorganic chemistry to such an extent that they are often viewed as a single discipline. While this has been beneficial for the development of both inorganic and analytical chemistry, it is increasingly important that the need of analytical education by the organic and biochemists as well as by chemical engineers is clearly recognized. The tightening environmental protection requires the analyst to be conversant with more sensitive, more accurate, and more reliable techniques in novel chemical surroundings, but at the same time he has to have as thorough knowledge in every field of chemistry as possible.  相似文献   

18.
In this paper I present a historiography of the recent emergence of philosophy of chemistry. Special attention is given to the interest in this domain in Eastern Europe before the collapse of the USSR. It is shown that the initial neglect of the philosophy of chemistry is due to the unanimous view in philosophy and philosophy of science that only physics is a proper science (to put in Kant's words). More recently, due to the common though incorrect assumption that chemistry can in principle be reduced to physics, the neglect continued, even when interest in sciences such as biology and psychology entered more strongly in philosophy of science. It is concluded that chemistry is an autonomous science and is perhaps a more typical science than physics.  相似文献   

19.
21世纪是生命科学与信息科学高速发展的时代,化学作为理科的中心学科与此二者均有紧密的联系。伴随着各种交叉学科的诞生与发展,将信息科学技术整合有机化学方法并用于认知生物大分子进而解决生命科学问题也是大势所趋,而在生物化学与化学生物学基础教学中引入相关内容也具有前瞻性与必要性。国外化学本科的基础教育也切合时宜地以一个生物信息学的最常用软件PyMOL为例设计相关实验,让学生在了解反应中的有机化学机理的基础上,学习酶的三维结构,并探究酶催化该反应的原因。此设计结合了有机化学、生物化学、生物信息学、蛋白质结构生物学等多学科,可以加深学生对多肽与蛋白质的高级结构的认识,并为今后的生物化学学习与研究打下基础,同时有利于培养学生对于化学的兴趣,可谓一举多得。这对于培养交叉学科人才,做出开创性研究极为重要。对国内生物有机化学实验的设计有借鉴作用。  相似文献   

20.
祁晓月  李先江  白玉  刘虎威 《色谱》2016,34(1):10-15
手性现象在自然界中广泛存在,手性分离在药物研发、农用化学、药理学、环境科学和生物学等诸多领域具有重要意义。手性金属有机骨架化合物材料(MOFs)是一类具有特殊拓扑结构和可设计的孔道结构的新型多孔材料,加之其比表面积高、孔隙率大、热稳定性良好和溶剂耐受性好等特性,使得MOFs在分析化学领域的应用与研究日益深入。本文简要综述了手性MOFs的合成方法,着重讨论了手性MOFs在对映异构体选择性分离方面的应用及相关机理,最后对该类材料的发展前景做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号