首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

2.
Static magnetic susceptibility χ(T) in the normal state (Tc ≤ T ≤ 400 K) and specific heat C(T) near temperature Tc of the transition to the superconducting state are experimentally studied for a series of fine crystalline samples of high-temperature YBa2Cu3Oy superconductor, having y and Tc close to optimal but differing in the degree of nanoscale structural disordering. It is shown that under the influence of structural disordering, there is enhancement of anomalous pseudogap behavior of the studied characteristics and a significant increase in the width of the pseudogap.  相似文献   

3.
We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5Te0.5 single crystals grown by self-flux and Bridgman methods. The lowest values of the susceptibility in thenormal state, the highest transition temperature T c of 14.4 K, and the largest heat-capacity anomaly at T c were obtained for pure (oxygen-free) samples. The criticalcurrent density j c of 8.6 × 104A/cm2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the anion sites. The samples containing an impurity phase of Fe3O4 show increased j c up to2.3 × 105A/cm2 due to additional pinning centers. The upper critical field\(H_{c2}\)of ~500 kOe is estimated from the resistivity studyin magnetic fields parallel to the c-axis using a criterion of a 50%drop of the normal state resistivity R n . The anisotropy ofthe upper critical fieldγ H c2 =H ab c2/H c2 c reaches a value ~6 at\(T\longrightarrow T_c\). Extremely low values of the residualSommerfeld coefficient \(\gamma_r\) of about 1 mJ/mol K2,compared to the normal state Sommerfeld coefficient γ n = 25mJ/mol K2 for pure samples indicate a high volume fraction of thesuperconducting phase (up to 97%). The electronic contribution to the specific heat in thesuperconducting state is well described within a single-band BCS model with a temperature dependent gapΔ(0 K) = 27(1) K. A broad cusp-like anomaly in the electronic specific heat observed at low temperatures in samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the Fe2+ ions at the 2c sites. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.  相似文献   

4.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

5.
Influence of temperature and magnetic field H on magnetism of spherical Gd nanoparticles of different sizes (89, 63, 47, 28, and 18 nm) was studied in the temperature range 250 K < T < 325 K. The particles were obtained by metal vapor condensation in the flow of helium. The particles with d = 18 nm did not show a magnetic transition; their structure is a combination of two cubic phases (FCC1 and FCC2). Large particles remained in the HCP phase and had an admixture of the FCC1 phase, the amount of which decreased as the particle sizes increased; magnetic transition took place at T c = 293 K. The admixture of O2 did not alter the structure but decreased the magnetization σ and magnetic permeability μ. An orientation transition in polycrystalline gadolinium initiated by the magnetic field H was proved in an experiment. The orientation transition in Gd particles smaller than 63 nm, the magnetic structure of which is close to the single-domain structure, occurred near T c without the influence of H.  相似文献   

6.
A comparative study of the low-temperature specific heat for two types of YBa2Cu3O y high-T c superconductor samples is performed within the temperature range of 2?10 K. The samples of the first type are fine-crystalline optimally doped ones with different degrees of nanoscale structural inhomogeneity. The second type includes coarse-crystalline equilibrium samples with different hole doping levels. A similarity in the behavior of different contributions to the specific heat for structurally inhomogeneous and underdoped samples is revealed. The samples of both types exhibit a metal-like contribution linear in temperature to the specific heat ~γT, which is not characteristic of the superconducting phase. It is found that this contribution moderately grows with the decrease in the oxygen content, whereas with the increase in the structural inhomogeneity, such growth of the linear contribution (γT) becomes anomalously large. This leads to the conclusion about the coexistence of metallic and superconducting states in the bulk of the samples under study. Such common feature of electron systems could be related to the formation of the pseudogap regime. It is demonstrated that this regime suppresses just the superconducting states, leaving intact the metallic ones.  相似文献   

7.
The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7–423 K in polarized light in the spectral range 500–10 000 cm–1 with a resolution up to 0.1 cm–1. A new first-order structural phase transition close to the second-order transition is recorded at Tc = 360 K by the appearance of a new phonon mode at 976 cm–1. The reasons for considerable differences in Tc for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f–f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at TN = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at TSR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to TSR = 4.0 K.  相似文献   

8.
Samples of a superconducting indium nanocomposite based on a thin-film porous dielectric matrix prepared by the Langmuir–Blodgett method are obtained for the first time, and their low-temperature electrophysical and magnetic properties are studied. Films with thickness b ≤ 5 μm were made from silicon dioxide spheres with diameter D = 200 and 250 nm; indium was introduced into the pores of the films from the melt at a pressure of P ≤ 5 kbar. Thus, a three-dimensional weakly ordered structure of indium nanogranules was created in the pores, forming a continuous current-conducting grid. Measurements of the temperature and magnetic field dependences of the resistance and magnetic moment of the samples showed an increase in the critical parameters of the superconductivity state of nanostructured indium (critical temperature Tc ≤ 3.62 K and critical magnetic field Hc at T = 0 K Hc(0) ≤ 1700 Oe) with respect to the massive material (Tc = 3.41 K, Hc(0) = 280 Oe). In the dependence of the resistance on temperature and the magnetic field, a step transition to the superconductivity state associated with the nanocomposite structure was observed. A pronounced hysteresis M(H) is observed in the dependence of the magnetic moment M of the nanocomposite on the magnetic field at T < Tc, caused by the multiply connected structure of the current-conducting indium grid. The results obtained are interpreted taking into account the dimensional dependence of the superconducting characteristics of the nanocomposite.  相似文献   

9.
The effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo1.90O5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200–650 K. The results show that the cobalt-deficient EuBaCo2–xO5.5–δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co3+ ions. The large difference of values of μeff of the EuBaCo1.90O5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.  相似文献   

10.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

11.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

12.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

13.
We have analyzed the temperature and magnetic-field dependences of resistivity ρ(T, H) of semiconducting compound Pb0.45Sn0.55Te doped with 5 at % In under a hydrostatic compression at P < 12 kbar. It is found that the temperature dependence ρ(T) at all pressures at T < 100 K is exponential with the activation energy decreasing upon an increase in pressure; this is accompanied with a superconducting transition on the ρ(T) and ρ(H) dependences at P > 4.8 kbar at T > 1 K (T c = 1.72 K at a level of 0.5ρ N at P = 6.8 kbar). We consider the model describing the low-temperature “dielectrization” of the semiconducting solid solution and the formation of the superconducting state upon an increase in the hydrostatic compression P > 4 kbar.  相似文献   

14.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

15.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

16.
Epitaxial BaFe1.8Cr0.2As2 thin films with the tetragonal c-axis perpendicular to the thin film surface were grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) single crystalline substrates using pulsed laser deposition (PLD). Resistive measurements indicate the existence of two transitions at temperatures of about 80 K and 40 K. The transition at 80 K is attributed to the structural transition from the high temperature tetragonal phase to the low temperature orthorhombic phase accompanied with the magnetic transition from a paramagnetic to an antiferromagnetic state as known for doped bulk systems. Below T ≈ 40 K the magnetization curves measured perpendicularly to the orthorhombic c-axis in fields up to 9 Tesla show two inflexion points indicating metamagnetic transitions.  相似文献   

17.
The magnetic, magnetoelectric, and magnetoelastic properties of a PrFe3(BO3)4 single crystal and the phase transitions induced in this crystal by the magnetic field are studied both experimentally and theoretically. Unlike the previously investigated ferroborates, this material is characterized by a singlet ground state of the rare-earth ion. It is found that, below T N = 32 K, the magnetic structure of the crystal in the absence of the magnetic field is uniaxial (lc), while, in a strong magnetic field Hc (H cr ~ 43 kOe at T = 4.2 K), a Fe3+ spin reorientation to the basal plane takes place. The reorientation is accompanied by anomalies in magnetization, magnetostriction, and electric polarization. The threshold field values determined in the temperature interval 2–32 K are used to plot an H-T phase diagram. The contribution of the Pr3+ ion ground state to the parameters under study is revealed, and the influence of the praseodymium ion on the magnetic and magnetoelectric properties of praseodymium ferroborate is analyzed.  相似文献   

18.
The magnetic superconductorRu0.9Sr2YCu2.1O7.9 (Ru-1212Y) has beeninvestigated using neutron diffraction under variable temperature and magnetic field. Withthe complementary information from magnetization measurements, we propose a magnetic phasediagram T-H for the Ru-1212 system. Uniaxialantiferromagnetic (AFM) order of 1.2μ B /Ruatoms with moments parallel to the c-axis is found below the magnetictransition temperature at  ~140 K in the absence of magnetic field. In addition,ferromagnetism (FM) in the ab-plane develops below  ~120 K, butis suppressed at lower temperature by superconducting correlations. Externally appliedmagnetic fields cause Ru-moments to realign from the c-axis to theab-plane, i.e. along the ?1,1,0? direction, and induce ferromagnetismin the plane with  ~1μ B at 60 kOe.These observations of the weak ferromagnetism suppressed by superconductivity and thefield-induced metamagnetic transition between AFM and FM demonstrate not only competingorders of superconductivity and magnetism, but also suggest a certain vortex dynamicscontributing to these magnetic transitions.  相似文献   

19.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

20.
The parameters of the long-wavelength exciton band for Rb2CdI4 films are investigated in the temperature range 90–410 K. It is found that the Rb2CdI4 films undergo a sequence of phase transitions at temperatures Tc1=380 K (paraphase → incommensurate phase), Tc2=290 K (incommensurate phase → ferroelastic phase I), and Tc3 = 210 K (ferroelastic phase I → ferroelastic phase II). The parameters of the exciton band (such as the spectral position and the half-width) measured during heating and cooling of the Rb2CdI4 film differ significantly. This is especially true for the incommensurate phase. Upon heating of the incommensurate phase, the domain boundaries become frozen, whereas the cooling of this phase is accompanied by the generation of solitons and their pinning, which, in turn, results in a first-order phase transition at the temperature Tc2. It is revealed that the oscillator strength of the exciton band anomalously increases in the range of existence of commensurate phase I (Tc3<-T<-Tc2) due to ordering of the Rb2CdI4 crystal lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号