首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A posteriori error estimators for the Stokes equations   总被引:5,自引:0,他引:5  
Summary We present two a posteriori error estimators for the mini-element discretization of the Stokes equations. One is based on a suitable evaluation of the residual of the finite element solution. The other one is based on the solution of suitable local Stokes problems involving the residual of the finite element solution. Both estimators are globally upper and locally lower bounds for the error of the finite element discretization. Numerical examples show their efficiency both in estimating the error and in controlling an automatic, self-adaptive mesh-refinement process. The methods presented here can easily be generalized to the Navier-Stokes equations and to other discretization schemes.This work was accomplished at the Universität Heidelberg with the support of the Deutsche Forschungsgemeinschaft  相似文献   

2.
Summary We present an a posteriori error estimator for the non-conforming Crouzeix-Raviart discretization of the Stokes equations which is based on the local evaluation of residuals with respect to the strong form of the differential equation. The error estimator yields global upper and local lower bounds for the error of the finite element solution. It can easily be generalized to the stationary, incompressible Navier-Stokes equations and to other non-conforming finite element methods. Numerical examples show the efficiency of the proposed error estimator.  相似文献   

3.
A residual-based a posteriori error estimator for finite element discretizations of the steady incompressible Navier–Stokes equations in the primitive variable formulation is discussed. Though the estimator is similar to existing ones, an alternate derivation is presented, involving an abstract estimate that may prove of some intrinsic value. The estimator is particularized to Hood–Taylor and modified Hood–Taylor finite elements and proved to be a global upper bound (up to a positive multiplicative constant) of the true error. Numerical examples are provided to illustrate the performance of the resulting mesh adaptation process. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 561–574, 1997  相似文献   

4.
We present an approach to estimate numerical errors in finite element approximations of the time-dependent Navier–Stokes equations along with a strategy to control these errors. The error estimators and the error control procedure are based on the residuals of the Navier–Stokes equations, which are shown to be comparable to error components in the velocity variable. The present methodology applies to the estimation of numerical errors due to the spatial discretization only. Its performance is demonstrated for two-dimensional channel flows past a cylinder in the periodic regime.  相似文献   

5.
Summary. We derive a posteriori error estimators for convection-diffusion equations with dominant convection. The estimators yield global upper and local lower bounds on the error measured in the energy norm such that the ratio of the upper and lower bounds only depends on the local mesh-Peclet number. The estimators are either based on the evaluation of local residuals or on the solution of discrete local Dirichlet or Neumann problems. Received February 10, 1997 / Revised version received November 4, 1997  相似文献   

6.
Charalambos Makridakis In this paper, we derive a posteriori error estimates for space-discreteapproximations of the time-dependent Stokes equations. By usingan appropriate Stokes reconstruction operator, we are able towrite an auxiliary error equation, in pointwise form, that satisfiesthe exact divergence-free condition. Thus, standard energy estimatesfrom partial differential equation theory can be applied directly,and yield a posteriori estimates that rely on available correspondingestimates for the stationary Stokes equation. Estimates of optimalorder in L(L2) and L(H1) for the velocity are derived for finite-elementand finite-volume approximations.  相似文献   

7.
In order to solve the time-dependent Stokes equation, we follow the “Method of Lines” to obtain structured linear constant-coefficient differential–algebraic equations (DAEs). By taking advantage of the structure, we propose a class of waveform relaxation methods, called continuous-time accelerated block SOR (CABSOR) methods, for solving the obtained DAEs. The new methods are theoretically analyzed. The theory is applied to a two-dimensional time-dependent Stokes equation and verified by numerical experiments.  相似文献   

8.
We assess the reliability of a simple a posteriori error estimatorfor steady-state convection–diffusion equations in caseswhere convection dominates. Our estimator is computed by solvinga local Poisson problem with Neumann boundary conditions. Itgives global upper and local lower bounds on the error measuredin the H1 semi-norm. However, the error may be overestimatedlocally within boundary layers if these are not resolved bythe mesh, that is, when the local mesh Péclet numberis significantly greater than unity. We discuss the implicationsof this overestimation in a practical context where the estimatoris used as a local error indicator within a self-adaptive meshrefinement process. Received 18 June 1999. Accepted 7 March 2000.  相似文献   

9.
Summary. This work presents an a posteriori error analysis for the finite element approximation of time-dependent Ginzburg-Landau type equations in two and three space dimensions. The solution of an elliptic, self-adjoint eigenvalue problem as a post-processing procedure in each time step of a finite element simulation leads to a fully computable upper bound for the error. Theoretical results for the stability of degree one vortices in Ginzburg-Landau equations and of generic interfaces in Allen-Cahn equations indicate that the error estimate only depends on the inverse of a small parameter in a low order polynomial. The actual dependence of the error estimate upon this parameter is explicitly determined by the computed eigenvalues and can therefore be monitored within an approximation scheme. The error bound allows for the introduction of local refinement indicators which may be used for adaptive mesh and time step size refinement and coarsening. Numerical experiments underline the reliability of this approach.Mathematics Subject Classification(2000): 65M15, 65M60, 65M50.AcknowledgmentS.B. is thankful to G. Dolzmann and R.H. Nochetto for stimulating discussions. This work was supported by a fellowship within the Postdoc-Programme of the German Academic Exchange Service (DAAD).  相似文献   

10.
The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart‐Thomas discretization which is related to the Crouzeix‐Raviart nonconforming finite element scheme in the lowest‐order case. The effective and guaranteed a posteriori error control for this nonconforming velocity‐oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf‐sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016  相似文献   

11.
This paper analyzes a parareal approach based on discontinuous Galerkin (DG) method for the time-dependent Stokes equations. A class of primal discontinuous Galerkin methods, namely variations of interior penalty methods, are adopted for the spatial discretization in the parareal algorithm (we call it parareal DG algorithm). We study three discontinuous Galerkin methods for the time-dependent Stokes equations, and the optimal continuous in time error estimates for the velocities and pressure are derived. Based on these error estimates, the proposed parareal DG algorithm is proved to be unconditionally stable and bounded by the error of discontinuous Galerkin discretization after a finite number of iterations. Finally, some numerical experiments are conducted which confirm our theoretical results, meanwhile, the efficiency of the parareal DG algorithm can be seen through a parallel experiment.  相似文献   

12.
Two- and multilevel truncated Newton finite element discretizations are presently a very promising approach for approximating the (nonlinear) Navier-Stokes equations describing the equilibrium flow of a viscous, incompressible fluid. Their combination with mesh adaptivity is considered in this article. Specifically, locally calculable a posteriori error estimators are derived, with full mathematical support, for the basic two-level discretization of the Navier-Stokes equations. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
In this work, the residual‐type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H1 norm and pressure in L2 norm are derived. Furthermore, a global upper bound of u ? uh in L2‐norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We consider a posteriori Zienkiewicz–Zhu (ZZ) type error estimators for the Maxwell equations. The main tool is the use of appropriate recovered values of the electric field and its curl. To cite this article: S. Nicaise, C. R. Acad. Sci. Paris, Ser. I 340 (2005).  相似文献   

15.
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair which satisfies some approximate assumption. An optimal error estimate of the numerical velocity and pressure is provided for the fully discrete penalty finite element method when the parameters and are sufficiently small.

  相似文献   


16.
We give here an error estimate for a finite volume discretization of the Stokes equations in two space dimensions on equilateral triangular meshes. This work was initiated by an analogous result presented by Alami‐Idrissi and Atounti for general triangular meshes. However, in this latter article, the result is not actually proven. We state here the restricting assumptions (namely equilateral triangles) under which the error estimate holds, using the tools which were introduced by Eymard, Gallouet and Herbin and used by Alami‐Idrissi and Atounti. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

17.
We consider a non-conforming domain decomposition techniquefor the discretization of the three-dimensional Stokes equationsby the mortar finite-element method. Relying on the velocity–pressureformulation of the system, we perform the numerical analysisof residual error indicators for this problem and we prove thatthe error estimators provide upper and lower bounds for theenergy norm of the mortar finite-element solution.  相似文献   

18.
John W. Pearson 《PAMM》2015,15(1):727-730
We consider the numerical solution of time-dependent Stokes control problems, an important class of flow control problems within the field of PDE-constrained optimization. The problems we examine lead to large and sparse matrix systems which, with suitable rearrangement, can be written in block tridiagonal form, with the diagonal blocks given by saddle point systems. Using previous results for preconditioning PDE-constrained optimization and fluid dynamics problems, along with well-studied saddle point theory, we construct a block triangular preconditioner for the matrix systems. Numerical experiments verify the effectiveness of our solver. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
In this paper we present a new method to solve the 2D generalized Stokes problem in terms of the stream function and the vorticity. Such problem results, for instance, from the discretization of the evolutionary Stokes system. The difficulty arising from the lack of the boundary conditions for the vorticity is overcome by means of a suitable technique for uncoupling both variables. In order to apply the above technique to the Navier–Stokes equations we linearize the advective term in the vorticity transport equation as described in the development of the paper. We illustrate the good performance of our approach by means of numerical results, obtained for benchmark driven cavity problem solved with classical piecewise linear finite element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号