首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hirzebruch functional equation is \(\sum\nolimits_{i = 1}^n {\prod\nolimits_{j \ne i} {(1/f({z_j} - {z_i})) = c} } \) with constant c and initial conditions f(0) = 0 and f'(0) = 1. In this paper we find all solutions of the Hirzebruch functional equation for n ≤ 6 in the class of meromorphic functions and in the class of series. Previously, such results have been known only for n ≤ 4. The Todd function is the function determining the two-parameter Todd genus (i.e., the χa,b-genus). It gives a solution to the Hirzebruch functional equation for any n. The elliptic function of level N is the function determining the elliptic genus of level N. It gives a solution to the Hirzebruch functional equation for n divisible by N. A series corresponding to a meromorphic function f with parameters in U ? ?k is a series with parameters in the Zariski closure of U in ?k, such that for the parameters in U it coincides with the series expansion at zero of f. The main results are as follows: (1) Any series solution of the Hirzebruch functional equation for n = 5 corresponds either to the Todd function or to the elliptic function of level 5. (2) Any series solution of the Hirzebruch functional equation for n = 6 corresponds either to the Todd function or to the elliptic function of level 2, 3, or 6. This gives a complete classification of complex genera that are fiber multiplicative with respect to ?Pn?1 for n ≤ 6. A topological application of this study is an effective calculation of the coefficients of elliptic genera of level N for N = 2,..., 6 in terms of solutions of a differential equation with parameters in an irreducible algebraic variety in ?4.  相似文献   

2.
In earlier papers we studied direct limits \({(G,\,K) = \varinjlim\, (G_n,K_n)}\) of two types of Gelfand pairs. The first type was that in which the G n /K n are compact Riemannian symmetric spaces. The second type was that in which \({G_n = N_n\rtimes K_n}\) with N n nilpotent, in other words pairs (G n , K n ) for which G n /K n is a commutative nilmanifold. In each we worked out a method inspired by the Frobenius–Schur Orthogonality Relations to define isometric injections \({\zeta_{m,n}: L^2(G_n/K_n) \hookrightarrow L^2(G_m/K_m)}\) for mn and prove that the left regular representation of G on the Hilbert space direct limit \({L^2(G/K) := \varinjlim L^2(G_n/K_n)}\) is multiplicity-free. This left open questions concerning the nature of the elements of L 2(G/K). Here we define spaces \({\mathcal{A}(G_n/K_n)}\) of regular functions on G n /K n and injections \({\nu_{m,n} : \mathcal{A}(G_n/K_n) \to \mathcal{A}(G_m/K_m)}\) for mn related to restriction by \({\nu_{m,n}(f)|_{G_n/K_n} = f}\). Thus the direct limit \({\mathcal{A}(G/K) := \varinjlim \{\mathcal{A}(G_n/K_n), \nu_{m,n}\}}\) sits as a particular G-submodule of the much larger inverse limit \({\varprojlim \{\mathcal{A}(G_n/K_n), {\rm restriction}\}}\). Further, we define a pre Hilbert space structure on \({\mathcal{A}(G/K)}\) derived from that of L 2(G/K). This allows an interpretation of L 2(G/K) as the Hilbert space completion of the concretely defined function space \({\mathcal{A}(G/K)}\), and also defines a G-invariant inner product on \({\mathcal{A}(G/K)}\) for which the left regular representation of G is multiplicity-free.  相似文献   

3.
Suppose that G is a bounded domain in ? n (n ? 2), EG is a relatively closed set in G, and 0 < α < 1. We prove that E is removable for solutions of the minimal surface equation in the class C 1,α(G)loc if and only if the (n ? 1 + α)-dimensional Hausdorff measure of E is zero.  相似文献   

4.
We consider the following modified version of the Banach-Mazur distance of convex bodies in \(\mathbb{R}^n :d\left( {K,L} \right) = \inf \left\{ {\left| \lambda \right|:\lambda \in \mathbb{R},\tilde K \subset \tilde L \subset \lambda \tilde K} \right\}\), where the infimum is taken over all non-degenerate affine images \(\tilde K\) and \(\tilde L\) of K and L. Gordon, Litvak, Meyer and Pajor in 2004 showed that for any two convex bodies d(K,L) ≤ n, moreover, if K is a simplex and L = ?L then d(K,L) = n. The following question arises naturally: Is equality only attained when one of the sets is a simplex? Leichtweiss in 1959, and later Palmon in 1992 proved that if d(K,B 2 n ) = n, where B 2 n is the Euclidean ball, then K is the simplex. We prove the affirmative answer to the question in the case when one of the bodies is strictly convex or smooth, thus obtaining a generalization of the result of Leichtweiss and Palmon.  相似文献   

5.
We conjecture that every infinite group G can be partitioned into countably many cells \(G = \bigcup\limits_{n \in \omega } {A_n }\) such that cov(A n A n ?1 ) = |G| for each nω Here cov(A) = min{|X|: X} ? G, G = X A}. We confirm this conjecture for each group of regular cardinality and for some groups (in particular, Abelian) of an arbitrary cardinality.  相似文献   

6.
The average section functional as(K) of a star body in Rn is the average volume of its central hyperplane sections: \(as\left( k \right) = \int_{{S^{n - 1}}} {\left| {K \cap {\xi ^ \bot }} \right|} d\sigma \left( \xi \right)\). We study the question whether there exists an absolute constantC > 0 such that for every n, for every centered convex body K in R n and for every 1 ≤ kn ? 2,
$$as\left( K \right) \leqslant {C^k}{\left| K \right|^{\frac{k}{n}}}\mathop {\max }\limits_{|E \in G{r_{n - k}}} {\kern 1pt} as\left( {K \cap E} \right)$$
. We observe that the case k = 1 is equivalent to the hyperplane conjecture. We show that this inequality holds true in full generality if one replaces C by CL K orCdovr(K, BP k n ), where L K is the isotropic constant of K and dovr(K, BP k n ) is the outer volume ratio distance of K to the class BP k n of generalized k-intersection bodies. We also compare as(K) to the average of as(KE) over all k-codimensional sections of K. We examine separately the dependence of the constants on the dimension when K is in some classical position. Moreover, we study the natural lower dimensional analogue of the average section functional.
  相似文献   

7.
Consider the set of all proper edge-colourings of a graph G with n colours. Among all such colourings, the minimum length of a longest two-coloured cycle is denoted L(n, G). The problem of understanding L(n, G) was posed by Häggkvist in 1978 and, specifically, L(n, K n,n ) has received recent attention. Here we construct, for each prime power q ≥ 8, an edge-colouring of K n,n with n colours having all two-coloured cycles of length ≤ 2q 2, for integers n in a set of density 1 ? 3/(q ? 1). One consequence is that L(n, K n,n ) is bounded above by a polylogarithmic function of n, whereas the best known general upper bound was previously 2n ? 4.  相似文献   

8.
Let G = (V,A) be a digraph and k ≥ 1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γ k (G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs G B (n, d) and generalized Kautz digraphs G K (n, d) are good candidates for interconnection networks. Denote Δ k := (∑ j=0 k d j )?1. F. Tian and J. Xu showed that ?nΔ k ? γ k (G B (n, d)) ≤?n/d k? and ?nΔ k ? ≤ γ k (G K (n, d)) ≤ ?n/d k ?. In this paper, we prove that every generalized de Bruijn digraph G B (n, d) has the distance k-domination number ?nΔ k ? or ?nΔ k ?+1, and the distance k-domination number of every generalized Kautz digraph G K (n, d) bounded above by ?n/(d k?1+d k )?. Additionally, we present various sufficient conditions for γ k (G B (n, d)) = ?nΔ k ? and γ k (G K (n, d)) = ?nΔ k ?.  相似文献   

9.
The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial Z-group E and a free abelian group A with rank m, where E ={(1 kα_1 kα_2 ··· kα_nα_(n+1) 0 1 0 ··· 0 α_(n+2)...............000...1 α_(2n+1)000...01|αi∈ Z, i = 1, 2,..., 2 n + 1},where k is a positive integer. Let AutG G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G of G, and AutG/ζ G,ζ GG be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the center ζ G of G. Then(i) The extension 1→ Aut_(G') G→ AutG→ Aut(G')→ 1 is split.(ii) Aut_(G') G/Aut_(G/ζ G,ζ G)G≌Sp(2 n, Z) ×(GL(m, Z)■(Z~)m).(iii) Aut_(G/ζ G,ζ GG/Inn G)≌(Z_k)~(2n)⊕(Z)~(2nm).  相似文献   

10.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

11.
The semilinear equation Δu = |u|σ?1 u is considered in the exterior of a ball in ? n , n ≥ 3. It is shown that if the exponent σ is greater than a “critical” value (= n/n?2), then for x → ∞ the leading term of the asymptotics of any solution is a linear combination of derivatives of the fundamental solution. It is shown that there exist solutions with the indicated leading term of an asymptotics of such a type.  相似文献   

12.
Let L be a uniformly elliptic linear second order differential operator in divergence form with bounded measurable real coefficients in a bounded domain G ? ?n (n ? 2). We define classes of continuous functions in G that contain generalized solutions of the equation L? = 0 and have the property that the compact sets removable for such solutions in these classes can be completely described in terms of Hausdorff measures.  相似文献   

13.
We deal with anomalous diffusions induced by continuous time random walks - CTRW in ?n. A particle moves in ?n in such a way that the probability density function u(·, t) of finding it in region Ω of ?n is given by ∫Ωu(x, t)dx. The dynamics of the diffusion is provided by a space time probability density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the equation
$$u\left( {x,t} \right) = \left[ {\left( {J - \delta } \right)*u} \right]\left( {x,t} \right)$$
, where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem for a given initial density distribution f. We use Banach fixed point method to solve it and prove that under parabolic rescaling of J, the equation tends weakly to the heat equation and that for particular kernels J, the solutions tend to the corresponding temperatures when the scaling parameter approaches 0.
  相似文献   

14.
Let G be a finite Abelian group acting (linearly) on space ?n and, therefore, on its complexification ?n, and let W be the real part of the quotient ?n/G (in the general case, W ≠ ?n/G). The index of an analytic 1-form on the space W is expressed in terms of the signature of the residue bilinear form on the G-invariant part of the quotient of the space of germs of n-forms on (?n, 0) by the subspace of forms divisible by the 1-form under consideration.  相似文献   

15.
We study several variants of a nonsmooth Newton-type algorithm for solving an eigenvalue problem of the form
$K\ni x\perp(Ax-\lambda Bx)\in K^{+}.$
Such an eigenvalue problem arises in mechanics and in other areas of applied mathematics. The symbol K refers to a closed convex cone in the Euclidean space ? n and (A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid to the case in which K is the nonnegative orthant of ? n . The more general case of a possibly unpointed polyhedral convex cone is also discussed in detail.
  相似文献   

16.
For any two positive integers n and k ? 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n ? 1} and such that there is a directed edge from a vertex a to a vertex b if a k b (mod n). Let \(n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} \) be the prime factorization of n. Let P be the set of all primes dividing n and let P 1, P 2 ? P be such that P 1P 2 = P and P 1P 2 = ?. A fundamental constituent of G(n, k), denoted by \(G_{{P_2}}^*(n,k)\), is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \(\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} \) and are relatively prime to all primes qP 1. L. Somer and M. K?i?ek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.  相似文献   

17.
We show that for every ? > 0 there exist δ > 0 and n0 ∈ ? such that every 3-uniform hypergraph on nn0 vertices with the property that every k-vertex subset, where kδn, induces at least \(\left( {\frac{1}{2} + \varepsilon } \right)\left( {\begin{array}{*{20}c} k \\ 3 \\ \end{array} } \right)\) edges, contains K4? as a subgraph, where K4? is the 3-uniform hypergraph on 4 vertices with 3 edges. This question was originally raised by Erd?s and Sós. The constant 1/4 is the best possible.  相似文献   

18.
Integral operators of the form \(L_K^{ - 1} f(x) = \int\limits_\Omega {K(x,t)f(t)dt}\) for the case of a finite domain Ω ? Rn with smooth boundary ?Ω are considered. Conditions on the real kernel K(x, t) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm–Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.  相似文献   

19.
The canonical representation of the Klein group K4 = ?2⊕?2 on the space ?* = ? {0} induces a representation of this group on the ring L = C[z, z?1], z ∈ ?*, of Laurent polynomials and, as a consequence, a representation of the group K4 on the automorphism group of the group G = GL(4,L) by means of the elementwise action. The semidirect product ?G = GK4 is considered together with a realization of the group ? as a group of semilinear automorphisms of the free 4-dimensional L-module M4. A three-parameter family of representations R of K4 in the group ? and a three-parameter family of elements X ∈ M4 with polynomial coordinates of degrees 2(? ? 1), 2?, 2(? ? 1), and 2?, where ? is an arbitrary positive integer (one of the three parameters), are constructed. It is shown that, for any given family of parameters, the vector X is a fixed point of the corresponding representation R. An algorithm for calculating the polynomials that are the components of X was obtained in a previous paper of the authors, in which it was proved that these polynomials give explicit formulas for automorphisms of the solution space of the doubly confluent Heun equation.  相似文献   

20.
Let G be a countable discrete infinite amenable group which acts continuously on a compact metric space X and let μ be an ergodic G-invariant Borel probability measure on X. For a fixed tempered F?lner sequence {Fn} in G with limn→+∞|Fn|/log n= ∞, we prove the following result:h_top~B(G_μ, {F_n}) = h_μ(X, G),where G_μ is the set of generic points for μ with respect to {F_n} and h_top~B(G_μ, {F_n}) is the Bowen topological entropy(along {F_n}) on G_μ. This generalizes the classical result of Bowen(1973).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号