首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Aqueous solutions of (S)-, (R)-, and (SR)-methionines (1–3); carbamide (4); (S)-, (R)-, and (SR)-N-carbamoylmethionines (5–7); glycoluril (8); and glycolurils containing (S)and (R)-methionine moieties (9 and 10) kept under natural and hypoelectromagnetic conditions were studied in comparison by a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry, and dielcometry). The process of selforganization and the properties of dilute solutions (1.0?10–15–10–1 mol L–1) of compounds 110 was shown for the first time to depend substantially on the structure of the solute and configuration of methionine (Met) enantiomers. In the series 13, the greatest ability to self-organization is observed for solutions of (SR)-Met in which supramolecular domains (1.0?10–5–1.0?10–1 mol L–1) and nanoassociates (1.0?10–11–1.0?10–8 mol L–1) are formed. The formation of nanoassociates in a concentration range of 1.0?10–12–1.0?10–6 mol L–1 can be responsible for the appearance of nonmonotonic concentration dependences of the physicochemical properties of solutions of N-carbamoylmethionines 57, whereas the physicochemical properties are more pronounced in solution of (S)-N-carbamoylmethionine 5 than in solutions of 6 and 7. The strongest influence of the configuration of the Met enantiomer on the ability of solution to self-organization was revealed in a series of glycolurils 9, 10: solutions of 9 with the (S)-Met moiety are disperse systems in which nanoassociates are formed in a range of 1.0?10–15–1.0?10–5 mol L–1, whereas in solutions of 10 with the (R)-Met fragment the ability to self-organization in the low-concentration range is absent.  相似文献   

2.
The crystal and molecular structure of bis(1-vinylimidazole)diacetatozinc (C14H18N4O4Zn), a highly effective antidote and antihypoxic drug, was determined [R1 0.0335 for 8902 unique reflections with I > 2σ(I) and wR2 0.0931 for all 10 752 unique reflections]. The triclinic unit cell contains two independent molecules of the complex, A and B. These molecules have short contacts O?H-C. The zinc atoms in molecules A and B have distorted tetrahedral coordination with the coordination sites occupied by the imidazole nitrogen atoms and acetate oxygen atoms. The lengths of the Zn-N bonds (2.019–2.050 Å) and Zn-O bonds with three acetate groups (1.956–1.958 Å) are typical for zinc complexes, whereas the Zn-O3 bond with one of the acetate groups in molecule A is somewhat longer, 2.009(1) Å; also, there is an additional contact of the zinc atom with the carbonyl oxygen atom of this group (Zn-O4 2.498 Å).  相似文献   

3.
The high-resolution 1H and 13C NMR spectra of eight 4-benzyl-4-hydroxypiperidines 1–8 were recorded in CDCl3 and analyzed. In 2, the conformation of the equatorial benzyl group at C(4) was established as an equilibrium mixture of A [the phenyl group is gauche with respect to OH and C(5)] and B [the phenyl group is gauche with respect to OH and C(3)], whereas in 3-alkyl-4-benzyl-4-hydroxypiperidines 3–8, the favored conformation of the benzyl group at C(4) is A. In 1, the axial benzyl group at C(4) adopts the gauche conformations A′ [the phenyl group is gauche with respect to OH and C(3)] and B′ [the phenyl group is gauche with respect to OH and C(5)], in which the phenyl ring of the benzyl group is gauche with respect to the OH group. The HF/DFT B3LYP/6-3G* hybrid calculations of model systems 1′–3′ also support these conformations. The 13C data reveal that the equatorial methyl group at C(3) exerts a shielding influence on the methyl-bearing carbon and the magnitude of the α effect was found to be approximately ?1.5 ppm. The parameters of the 13C substituent in the benzyl group show that the the α effect of the equatorial benzyl group is considerably higher in 3-ethyl tertiary alcohol 7 than in 3-methyl tertiary alcohol 3 and 4-benzyl-t(4)-hydroxypiperidine 2. This may be explained if we take into account the different conformations of the ethyl group in t(4)-hydroxy-3-ethyl-2,6-diphenylpiperidine 12 and 3-ethyl tertiary alcohol 7.  相似文献   

4.
The products of photolysis of N-substituted salicylic acid amides, viz., 2-hydroxy-3-tert-butyl-5-ethylbenzoic acid N-(4-hydroxy-3,5-di-tert-butylphenyl)amide (1) and 2-hydroxybenzoic acid N-[3-(4-hydroxy-3,5-di-tert-butylphenyl)prop-1-yl]amide (2), in heptane were studied by optical spectroscopy and stationary and nanosecond laser photolysis (Nd: YAG laser, 355 nm). It was shown by the method of partial deuteration of amides 1 and 2 that they exist in both the unbound state and as complexes with intraand intermolecular hydrogen bond. Amides 1 and 2 are subjected to photolysis, which results in the formation of a triplet state and phenoxyl radicals RO? presumably due to the absorption of the second photon by the excited singlet state. The formation of radical products due to N–H bond ionization was not observed. The main channel of decay of the triplet state and radicals RO? is triplet–triplet annihilation and recombination (k r ≈ 2.3?108 L mol–1 s–1), respectively. The UV irradiation of compounds 1 and 2 leads to the excitation of the amide groups, and no formation of radical products due to N–H bond ionization was observed.  相似文献   

5.
A density functional theory investigation on the structural and bonding properties of B3S n ?/0 (n = 2–4) series has been performed. Based on B3LYP and CCSD(T) calculations, we present the linear D ∞h B3S2 ? (1, 3Σg) and D ∞h B3S2 (2, 2Πu), the Y-shaped C 2v B3S3 ? (3, 1A1) and C 2v B3S3 (4, 2B2), and perfectly planar structures C 2v B3S4 ? (5, 1A1) and C 2v B3S4 (6, 2B2) that contain rhombic B2S2 rings. The 16 ground-state structures are planar with linear “B–B–B” core, in which the first and the second S atoms prefer to bond terminally to the terminal B, and the third S atom bonds to the center B, however, when the third S atom is added with the fourth, the atoms tend to be in the bridging positions of two adjacent B atoms. The growth pattern of B3S n ?/0 (n = 2–4) clusters helps to understand the structural properties of the other small boron sulfide clusters. Bonding analyses reveal that a dual or single three-center one-electron (3c–1e) π hypervalent bonds located over the “B–B–B” core of D ∞h B3S2 ? (1) and B3S2 (2), respectively. While C 2v B3S4 ? (5) and B3S4 (6) with rhombic B2S2 rings as the center with –BS and –S units all possess 4c–4e bonds (o-bonds) in the rhombic B2S2 rings.  相似文献   

6.
This paper describes the hydrothermal synthesis, full characterization, and architectural diversity of three intriguingly bioactive cobalt–organic frameworks, namely, 3D [Co(HL ? )2(BPY)] n ·4nH2O (1), 2D [Co(HL ? )2(BPE)] n (2), and 2D [Co(HL ? )2(DPP)] n (3) coordination polymers, synthesized through a mixed ligand strategy using H 2 L (1-H-indazole-3-carboxylic acid) as a main structural block and the flexible bipyridine and its derivatives (BPY = 4,4′-bipydine, BPE = 1,2-bis(4-pyridyl)ethane, DPP = 1,3-bis(4-pyridyl)propane) as auxiliary ligand sources. Complexes 13 were isolated as air stable and slightly soluble crystalline solids and characterized using elemental analysis, FT-IR, electrochemical technique, thermogravimetric analysis, powder X-ray diffractometer, and single-crystal X-ray crystallography. The bipyridine derivatives played key roles in defining the structural space group and dimensionality feature of the obtained networks. The abundant H-bonding and ππ stacking interactions in complexes 13 gave rise to their intricate metal–organic structures of 3D (1), 2D (2), and 2D (3). In addition, the solutions of complexes 13 showed profound antifungal activities against the selected strain of Colletotrichum musae compared with the controlled group using benomyl as a traditional agrochemical fungicide.  相似文献   

7.
The reaction of different macrocyclic metallic tectons and dicarboxylic acid ligand yielded six new coordination polymers, namely, {[(NiL1)(4,4'-Bpdc)] ? DMF ? 2.5H2O} n (I), {[(NiL2)(4,4'-Bpdc)] ? DMF ? 2.5H2O} n (II), [(NiL3)2(4,4'-Bpdc)1.5][(NiL3)(4,4'-Bpdc)] ? ClO4 ? 28H2O (III), {[(NiL4)(4,4'-Bpdc)] ? 4H2O} n (IV), {[(NiL5)(4,4'-Tpdc)] ? 5H2O} n (V), {[(NiL3)(4,4'-Tpdc)]} n (VI) (L1 = 1,4,7,9,12,14-hexaaza-tricyclo[12.2.1.14.7]octadecane, L2 = 1,3,10,12,15,18-hexaazatetracyclo[16.2.1.112.15.04.9]docosane, L3 = 11-methyl-1,4,8,10,13,15-hexaaza-tricyclo[13.3.1.14.8]icosane, L4 = 1,3,10,12,16,19-hexaazate-tracyclo[17.3.1.1.12.16,04.9]tetracosane, L5 = 1,4,8,10,13,15-hexaaza-tricyclo[13.3.1.14.8]icosane, 4,4'-Bpdc = 4,4'-biphenyldicarboxylic acid and 4,4'-Tpdc = 4,4'-terphenyldicarboxylic acid) (CIF files CCDC nos. 1055545–1055550 for I–VI, respectively). Except for the different conformations of the macrocyclic metallic tectons or dicarboxylic acid ligands, complexes I–VI crystallized under the same environment, however, they exhibit diverse packing mode of infinite 1D coordination polymers, showing macrocyle or dicarboxylic acid ligand regulated self-assemble. The solid states UV-Vis for complexes I–VI also have been investigated.  相似文献   

8.
Two Mn(II) coordination polymers, {[Mn3 (Pfca)6(Phen)2] · 2DMF} n (I) and [Mn(Pfca)2(Phen)(H2O)] n (II) (HPfca = 4-fluorocinnamic acid, Phen = 1,10-phenanthroline), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and singlecrystal X-ray diffraction (CIF files CCDC nos. 967513 (I), 1542972 (II)). Complex I crystallizes in the triclinic crystal system, space group Pī with a = 11.0821(11), b = 12.2632(12), c = 15.0288(15) Å, α = 87.3760(10)°, β = 88.4610(10)°, γ = 81.2220(10)°, V = 2016.0(3) Å3, ρc = 1.369 g/cm3, M r = 1662.25, Z = 1, F(000) = 853, μ = 0.543 mm–1, the final R = 0.0592 and wR = 0.1681 for 15498 observed reflections with I > 2σ(I). Complex II is of monoclinic system, space group P21/c with a = 18.0539(19), b = 8.5806(9), c = 18.758(2) Å, β = 116.5700(10)°, V = 2599.0(5) Å3, ρc = 1.491 g/cm3, M r = 583.44, Z = 4, F(000) = 1196, μ = 0.567 mm–1, the final R = 0.0337 and wR = 0.0853 for 18139 observed reflections with I > 2σ(I). Complex I features linear Mn(II)-trinuclear units, which form 1D chain structure through F···F weak interactions, and complex II is 1D polymeric Mn(II)-chains. Antiferromagnetic coupling interactions exist within Mn(II)- carboxylate trinuclear in I (J =–0.40 cm–1) and Mn(II)-carboxylate chain in II (J =–0.45 cm–1).  相似文献   

9.
Novel platinum(II) organometallic dinuclear complexes and oligomers with two types of phenanthroline ligands, namely 3,8-diethynylphenanthroline (L1) and 3,8-bis-(4-ethynyl-phenylethynyl)-1,10-phenanthroline (L2), were synthesized from trans-Pt(PBu3)2(1-ethynyl-4-methyl-benzene)Cl and trans-Pt(PBu3)2Cl2 by transmetalation of copper ion. The alternative procedure targeted platinum oligomer termination selection of either chloride or respective phenanthrolines and was successfully performed with different purifications by extraction and column chromatography. The structural formulae of these platinum complexes and oligomers were revealed with by analysis of both 31P{1H}-NMR and 1H-NMR spectral data. Alternative preparations of platinum oligomers with two types between chloride and respective phenanthroline termination are very useful for the selective synthesis for hybrid polymers with the coupling reaction with two different platinum oligomers with different diethynylaryl ligands. The platinum organometallic compounds showed similar absorption bands in the UV–Vis region. Those prepared with L1 had a strong absorption band at around 400 nm, assignable to the lowest energy metal-perturbed 1[ππ*] transitions, while in compounds prepared with L2, the strong band appeared around 410 nm, because L2 has an extended π conjugation relative to L1. No distinct differences were observed in the absorption spectra of these platinum oligomers between the different terminal structures, chloride or various phenanthrolines. The luminescence spectra of the platinum compounds prepared with either L1 or L2, however, showed a distinct difference. Those with L1 showed only a phosphorescence assignable to a typical metal-perturbed 3[ππ*] transition with vibronic progressions centered at around 530 nm in deoxygenated CH2Cl2 at room temperature, while those with L2 showed weak dual emissions assignable to a mixture of typical metal-perturbed 1[ππ*] and 3[ππ*] transitions in the visible region.  相似文献   

10.
Sterically hindered meso-tetramethyl-meso-tetraarylcalix[4]pyrroles 1-4 where aryl is p-fluorophenyl 1, p-chlorophenyl 2, and p-methylphenyl 3, 4 (configurational isomers) are synthesized and purified by the recrystallization technique. They are characterized by IR, 1H and 13C NMR, and mass spectroscopy. Configurational isomers ααββ (3) and αααα (4) of meso-tetramethyl-meso-tetramethylphenylcalix[ 4]pyrroles are assigned by the 1H NMR studies and confirmed by the X-ray diffraction analysis. The single crystal X-ray diffraction analysis reveals that the ethanol adduct of 1, the acetone adduct of 2 and 3 adopt the 1,2-conformation while the acetone-water adduct of 1 and the acetone adduct of 4 adopt partial cone and cone conformations respectively. The conformational diversity is due to non-covalent interactions among the encapsulated guest, pyrrolic NH protons, and meso- substituents. Anion binding studies (F, Cl, CH3COO, HSO 4 ? ) are carried out through 1H NMR titrations; the binding constants are evaluated using the EQNMR program, displaying that they are more selective towards fluoride rather than other anions with the 1:1 stoichiometry. The configuration of compounds drastically influences the ion-recognition processes.  相似文献   

11.
Four organic–inorganic hybrid selenidostannates, namely [H2en][H2dien][Fe(dien)2]2(Sn2Se6)2 (1), [Fe(dien)2]2Sn2Se6 (2), [Fe(dien)2]FeSnSe4 (3), and [Mn(dien)2]MnSnSe4 (4) (en = ethylenediamine; dien = diethylenetriamine), were prepared in different solvents under solvothermal conditions. Complexes 1 and 2 consist of discrete [Sn2Se6]4? and [Fe(dien)2]2+ ions, as well as organic cations [H2en]2+ and [H2dien]2+ in 1. The dimeric [Sn2Se6]4? anion is formed by two SnSe4 tetrahedra via edge-sharing. Complexes 3 and 4 are composed of one-dimensional polyanions [TMSnSe 4 2? ] n plus [TM(dien)2]2+ counter cations (TM = Fe, Mn). In the [TMSnSe 4 2? ] n anionic chain, the TM and Sn atoms are located at the same metal site with a ratio of 0.5/0.5. The TM1/2Sn1/2Se4 tetrahedra are interlinked via edge-sharing, forming the heterometallic [TMSnSe 4 2? ] n polymeric anion. The [TM(dien)2]2+ cations in 12 and 34 have u-fac and mer configurations, respectively. In all four crystal structures, the anions and cations are connected into extended structures via weak N–H···Se hydrogen bonds. The band gaps of complexes 14 calculated from the solid-state UV–vis diffuse reflectance spectra were at 2.58, 2.60, 2.21, and 2.25 eV, respectively. Thermogravimetric analyses show that complex 1 decomposes in three steps, while complexes 24 each decompose in one step.  相似文献   

12.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

13.
The condensation reactions of hexachlorocyclotriphosphazene, N3P3Cl6, with N-alkyl-N′-mono(4-nitrobenzyl)diamines (13), NO2PhCH2NH(CH2) n NHR1 (R1 = CH3 or C2H5), led to the formation of the mono(4-nitrobenzyl)spirocyclotriphosphazenes (46). The tetra-pyrrolidino (4a6a), piperidino (4b6b), and 1,4-dioxa-8-azaspiro[4,5]decaphosphazenes (4c6c) were prepared from(for) the reactions of partly substituted compounds (4, 5, and 6) with excess pyrrolidine, piperidine, and 1,4-dioxa-8-azaspiro[4,5]decane (DASD), respectively. The partly substituted geminal (4d and 5d) and cis-morpholino (6d) phosphazenes were isolated from the reactions of excess morpholine in boiling THF and o-xylene, but the expected fully substituted compounds were not obtained. The structures of all the phosphazene derivatives were determined by elemental analyses, MS, FTIR, 1H, 13C{1H}, 31P{1H} NMR, HSQC, and HMBC techniques. The crystal structures of 4, 6, 4a, and 5a were verified by X-ray diffraction analysis. In addition, in vitro cytotoxic activities of fully substituted phosphazenes (4a6c) against HeLa cervical cancer cell lines (ATCC CCL-2) and the compounds 4a and 4c against breast cancer cell lines (MDA-MB-231) and L929 fibroblast cells were evaluated, respectively. Apoptosis effect was determined by MDA-MB-231 cancer cell lines and fibroblast cells. The MIC values of the compounds were in the ranges of 9.8–19.5 µM. The compounds 6, 5a, 6a, 5b, and 6d have greater MIC activity against bacterial and yeast strain. The investigation of DNA binding with the phosphazenes was studied using plasmid DNA. The phosphazene derivatives inhibit the restriction endonuclease cleavage of plasmid DNA by BamHI and HindIII enzymes. BamHI and HindIII digestion results demonstrate that the compounds bind with G/G and A/A nucleotides.  相似文献   

14.
Synthesis of analogs of tubuloclustin (N-(7-adamant-2-yloxy-7-oxoheptanoyl)-N-deacetylcolchicine (1)) with the colchicine fragment replaced with 2-methoxyestradiol scaffold attached via phenolic hydroxy group was described. Esters 3a–c exhibit moderate cytotoxicity (EC50 = 5–6 μmol L–1) and exert a weak effect on the microtubule network in A549 human lung carcinoma cells similar to the clustering effect of tubuloclustin and its derivatives. Conjugates 6a–c and 7a–c with the phenolic ester bond are low stable and compounds 7a–c are inactive to the microtubules of A549 cells, while compounds 6a–c cause an unusual effect of curling of the microtubules.  相似文献   

15.
para-Substituted iron meso-triphenylcorrole derivatives [Fe(ms-p-R-Ph)3Cor] containing electron- donating (R = OMе) and electron-drawing (R = NO2) groups in phenyl rings are synthesized and characterized by 1H NMR, electronic absorption spectroscopy, and mass spectrometry. The effect of the nature of functional groups within iron complexes on the redox processes involving these complexes in water–alkaline solutions is analyzed. Electronic transitions in the ligand (Ered/ox = 0.820–0.850 V) and the metal (Ered/ox =–0.005 to–0.190 and–0.790 to–0.870 V for the Fe4+ ? Fe3+ and Fe3+ ? Fe2+ transitions, respectively) were found in the cyclic voltammograms. Iron in the synthesized complexes IIV under the conditions under study exists in the +4 oxidation state. The activity of iron complexes in electroreduction of molecular oxygen significantly depends on the nature of a substituent, increases in the series: Fe(ms-p-NO2Ph)3Cor (II) < Fe(ms-p-MeOPh)3Cor (I) < Fe(β-Br)8(ms-Ph)3Cor (IV) < Fe(ms-Ph)3Cor (II) and is caused by the fact that low-energy redox electron transitions occur in the molecules. The electrocatalytic activity of iron corroles is much higher than that of metal porphyrins with a similar structure.  相似文献   

16.
Metal(II) complexes of 4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HL) were prepared, and their compositions and physicochemical properties were characterized on the basis of elemental analysis, with1HNMR, UV–Vis, IR, mass spectroscopy and thermogravimetric analysis. All results confirm that the novel complexes have a 1:1 (M:HL) stoichiometric formulae [M(HL)Cl2] (M = Cu(II)(1), Cd(II)(5)), [Cu(L)(O2NO)(OH2)2](2), [Cu(HL)(OSO3)(OH2)3]2H2O(3), [Co(HL)Cl2(OH2)2]3H2O(4), and the ligand behaves as a neutral/monobasic bidentate/tridentate forming a five/six-membered chelating ring towards the metal ions, bonding through azomethine nitrogen, exocyclic carbonyl oxygen, and/or deprotonated phenolic oxygen atoms. The XRD studies show that both the ligand and Cu(II) complex (1) show polycrystalline with monoclinic crystal structure. The molar conductivities show that all the complexes are non-electrolytes. On the basis of electronic spectral data and magnetic susceptibility measurements, a suitable geometry has been proposed. The trend in g values (g ll > g  > 2.0023) suggest that the unpaired electron on copper has a \(d_{{x^{2} - y^{2} }}\) character, and the complex (1) has a square planar, while complexes (2) and (3) have a tetragonal distorted octahedral geometry. The molecular and electronic structures of the ligand (HL) and its complexes (15) have been discussed. Molecular docking was used to predict the binding between HL ligand and the receptors of the crystal structure of Escherichia coli (E. coli) (3t88) and the crystal structure of Staphylococcus aureus (S. aureus) (3q8u). The activation thermodynamic parameters, such as activation energy (E a), enthalpy (ΔH), entropy (ΔS), and Gibbs free energy change of the decomposition (ΔG) are calculated using Coats–Redfern and Horowitz–Metzger methods. The ligand and its metal complexes (15) showed antimicrobial activity against bacterial species such as Gram positive bacteria (Bacillus cereus and S. aureus), Gram negative bacteria (E. coli and Klebsiella pneumoniae) and fungi (Aspergillus niger and Alternaria alternata); the complexes exhibited higher activity than the ligand.  相似文献   

17.
The coordination reactions of 3d metal salts with malonic acid N,N′-bis(salicyloyl) bishydrazide (H6mbshz) afforded three complexes, namely [Cu2(H2bshz)(Py)4Cl2]·Py (1) (Py = pyridine), [Fe2(bshz)(Py)2] (2) and the known complex [Ni4(aehba)2(DMF)2(H2O)2]·2DMF (3), where bshz = N,N′-bis(salicyloyl)hydrazine anion and aehba4? = azo-enolic-2-hydroxybenzamide anion. The X-ray crystal structures of all three complexes have been obtained. Complexes 1 and 2 are composed of N–N-bridged binuclear units, while complex 3 displays a planar tetranuclear structure in which four Ni(II) centers are linked together by N–N and N=N bonds. The bshz anions in 1 and 2 and aehba4? anions in 3 were all generated in situ from H6mbshz. A mechanism for these reactions is proposed, involving tandem C–N cleavage and C–N/N–N coupling processes via free radical intermediates. Magnetic investigations revealed dominant antiferromagnetic interactions between the metallic centers of each complex.  相似文献   

18.
Dimethylgold(III) complexes with 8-hydroxyquinoline Me2Au(Ox) (I) and 8-mercaptoquinoline Me2Au(Tox) (II) were synthesized and studied. Complex II obtained for the first time was identified from the elemental analysis, IR, 1H NMR, and mass spectrometry data. The thermal properties of complexes I, II in condensed state were investigated by thermography. The temperature dependences of the saturated vapor pressure over crystals were measured by the Knudsen effusion method with mass spectrometric recording of the gas phase composition and the thermodynamic characteristics of the sublimation process were determined: for I, log P[Torr] = (14.6 ± 0.3) ? (6.34 ± 0.10) × 103/(T, K), Δ H subl o = 121.2 ± 1.9 kJ?1, Δ S subl o = 224.1 ± 4.6 J mol?1 K?1 (the temperature interval under study 80–115°C); for II, log P [Torr] = (13.3 ± 0.2) ? (6.30 ± 0.09) × 103/(T, K), Δ H subl o = 120.5 ± 1.7 kJmol?1, ΔS subl o = 199.3 ± 3.0 J mol?1 K?1 (86–145°C).  相似文献   

19.
The structures of catena-[K(μ6-Hba?O,O,O,O′,O′,O″)] (I) and catena-[Cs(μ6-Hba–O,O,O′,O′,O″,O″)] (II), where Н2ba is barbituric acid C4H4N2O3, were characterized by powder X-ray diffraction. Crystallographic data: a = 14.1603 (4) Å, b = 3.68977 (9) Å, c = 10.9508 (3) Å, β = 82.226 (1)°, V = 566.90 (3) Å3, space group P21/n, Z = 4 for I; a = 14.652 (1) Å, b = 11.7275 (7) Å, c = 3.8098 (3) Å, β = 79.140 (6)°, V = 642.90 (8) Å3, space group C2/m, Z = 4 for II. The structural topologies of alkali metal complexes with barbituric acid and some its derivatives were compared. The thermal stability of complexes I and II in an air atmosphere was studied.  相似文献   

20.
1,1′-Dinaphthyl ketone (15), 1,2′-dinaphthyl ketone (18), 2,2′-dinaphthyl ketone (19), 1,1′-dinaphthyl thioketone (16), 1,2′-dinaphthyl thioketone (20), 2,2′-dinaphthyl thioketone (21), 1,1′-dinaphthyldiazomethane (17), 1,2′-dinaphthyldiazomethane (22), and 2,2′-dinaphthyldiazomethane (23) have been synthesized. Ketone 15 has been prepared from di(1-naphthyl)methanol; ketone 18 has been prepared by a Friedel–Crafts acylation of naphthalene with 2-naphthoyl chloride; ketone 19 has been prepared by a Grignard reaction of 2-naphthylmagnesium bromide with 2-naphthoyl chloride. Thioketones 16, 20, and 21 have been prepared by reactions of the corresponding ketones 15, 18, and 19 with Lawesson’s reagent. The diazomethane derivatives 17, 22, and 23 have been prepared by the HgO oxidation of the respective hydrazones 25, 27, and 28 (prepared from the respective thioketones 16, 20, and 21). The crystal and molecular structures of ketones 15, 18, and 19 and of thioketone 16 have been determined. A variety of conformations in the crystal structures is noted: 1Z,1′Z (15), 1E,1′Z (16), 1E,2′E (18), 2Z,2′Z (19). The NMR experiments have demonstrated the downfield shifts of the protons peri to the carbonyl and the thiocarbonyl groups in 15, 16, and 18, but not in 20. A systematic DFT study (B3LYP/6-31G(d)) of the conformational spaces of 1523 and their 1H and 13C NMR chemical shifts has been performed. In each series of constitutional isomers, the order of stabilities is 2,2′-(NA)2C=X > 1,2′-(NA)2C=X > 1,1′-(NA)2C=X. The decrease in the stabilities of 1-naphthyl derivatives relative to 2-naphthyl derivatives is attributed to the increased overcrowding and the increased twist angles in 1-naphthyl derivatives. The increased stabilization of E-conformations with the increase of the radius of a heteroatom at C9 due to the steric reasons is noted. The DFT calculations satisfactorily describe the X-ray conformations of 15, 16, 18, and 19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号