首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The quantum double of the Haagerup subfactor, the first irreducible finite depth subfactor with index above 4, is the most obvious candidate for exotic modular data. We show that its modular data \({\mathcal{D}{\rm Hg}}\) fits into a family \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) , where n ≥  0 and \({\omega\in \mathbb{Z}_{2n+1}}\) . We show \({\mathcal{D}^0 {\rm Hg}_{2n+1}}\) is related to the subfactors Izumi hypothetically associates to the cyclic groups \({\mathbb{Z}_{2n+1}}\) . Their modular data comes equipped with canonical and dual canonical modular invariants; we compute the corresponding alpha-inductions, etc. In addition, we show there are (respectively) 1, 2, 0 subfactors of Izumi type \({\mathbb{Z}_7, \mathbb{Z}_9}\) and \({\mathbb{Z}_3^2}\) , and find numerical evidence for 2, 1, 1, 1, 2 subfactors of Izumi type \({\mathbb{Z}_{11},\mathbb{Z}_{13},\mathbb{Z}_{15},\mathbb{Z}_{17},\mathbb{Z}_{19}}\) (previously, Izumi had shown uniqueness for \({\mathbb{Z}_3}\) and \({\mathbb{Z}_5}\)), and we identify their modular data. We explain how \({\mathcal{D}{\rm Hg}}\) (more generally \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\)) is a graft of the quantum double \({\mathcal{D} Sym(3)}\) (resp. the twisted double \({\mathcal{D}^\omega D_{2n+1}}\)) by affine so(13) (resp. so\({(4n^2+4n+5)}\)) at level 2. We discuss the vertex operator algebra (or conformal field theory) realisation of the modular data \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) . For example we show there are exactly 2 possible character vectors (giving graded dimensions of all modules) for the Haagerup VOA at central charge c = 8. It seems unlikely that any of this twisted Haagerup-Izumi modular data can be regarded as exotic, in any reasonable sense.  相似文献   

2.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

3.
4.
The Lie algebra \({\mathcal{D}}\) of regular differential operators on the circle has a universal central extension \({\hat{\mathcal{D}}}\). The invariant subalgebra \({\hat{\mathcal{D}}^+}\) under an involution preserving the principal gradation was introduced by Kac, Wang, and Yan. The vacuum \({\hat{\mathcal{D}}^+}\)-module with central charge \({c \in \mathbb{C}}\), and its irreducible quotient \({\mathcal{V}_c}\), possess vertex algebra structures, and \({\mathcal{V}_c}\) has a nontrivial structure if and only if \({c \in \frac{1}{2}\mathbb{Z}}\). We show that for each integer \({n > 0}\), \({\mathcal{V}_{n/2}}\) and \({\mathcal{V}_{-n}}\) are \({\mathcal{W}}\)-algebras of types \({\mathcal{W}(2, 4,\dots,2n)}\) and \({\mathcal{W}(2, 4,\dots, 2n^2 + 4n)}\), respectively. These results are formal consequences of Weyl’s first and second fundamental theorems of invariant theory for the orthogonal group \({{\rm O}(n)}\) and the symplectic group \({{\rm Sp}(2n)}\), respectively. Based on Sergeev’s theorems on the invariant theory of \({{\rm Osp}(1, 2n)}\) we conjecture that \({\mathcal{V}_{-n+1/2}}\) is of type \({\mathcal{W}(2, 4,\dots, 4n^2 + 8n + 2)}\), and we prove this for \({n = 1}\). As an application, we show that invariant subalgebras of \({\beta\gamma}\)-systems and free fermion algebras under arbitrary reductive group actions are strongly finitely generated.  相似文献   

5.
A quantum system (with Hilbert space \({\mathcal {H}_{1}}\)) entangled with its environment (with Hilbert space \({\mathcal {H}_{2}}\)) is usually not attributed to a wave function but only to a reduced density matrix \({\rho_{1}}\). Nevertheless, there is a precise way of attributing to it a random wave function \({\psi_{1}}\), called its conditional wave function, whose probability distribution \({\mu_{1}}\) depends on the entangled wave function \({\psi \in \mathcal {H}_{1} \otimes \mathcal {H}_{2}}\) in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of \({\mathcal {H}_{2}}\) but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about \({\mu_{1}}\), e.g., that if the environment is sufficiently large then for every orthonormal basis of \({\mathcal {H}_{2}}\), most entangled states \({\psi}\) with given reduced density matrix \({\rho_{1}}\) are such that \({\mu_{1}}\) is close to one of the so-called GAP (Gaussian adjusted projected) measures, \({GAP(\rho_{1})}\). We also show that, for most entangled states \({\psi}\) from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval \({[E, E+ \delta E]}\)) and most orthonormal bases of \({\mathcal {H}_{2}}\), \({\mu_{1}}\) is close to \({GAP(\rm {tr}_{2} \rho_{mc})}\) with \({\rho_{mc}}\) the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then \({\mu_{1}}\) is close to \({GAP(\rho_\beta)}\) with \({\rho_\beta}\) the canonical density matrix on \({\mathcal {H}_{1}}\) at inverse temperature \({\beta=\beta(E)}\). This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.  相似文献   

6.
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.  相似文献   

7.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

8.
A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass m, finitely many excited states and an electric dipole moment, \({\vec{d}_0 = -\lambda_{0} \vec{d}}\), where \({\| d^{i}\| = 1, i = 1, 2, 3,}\) and \({\lambda_0}\) is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, \({-\vec{d}_0 \cdot \vec{E}}\), where \({\vec{E}}\) is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum \({\vec{p}}\) of the atom and of the coupling constant \({\lambda_0}\), provided \({\vert\vec{p} \vert < mc}\) and \({\vert \Im \vec{p} \vert}\) and \({\vert \lambda_{0} \vert}\) are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of ‘smooth Feshbach–Schur maps’ applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.  相似文献   

9.
We study the long time dynamics of the Schrödinger equation on Zoll manifolds. We establish criteria under which the solutions of the Schrödinger equation can or cannot concentrate on a given closed geodesic. As an application, we derive some results on the set of semiclassical measures for eigenfunctions of Schrödinger operators: we prove that adding a potential \({V \in C^{\infty} (\mathbb{S}^{d})}\) to the Laplacian on the sphere results in the existence of geodesics \({\gamma}\) such that the uniform measure supported on \({\gamma}\) cannot be obtained as a weak-\({\star}\) accumulation point of the densities \({(|\psi_{n}|^{2} {vol}_{\mathbb{S}^d})}\) for any sequence of eigenfunctions \({(\psi_n)}\) of \({\Delta_{\mathbb{S}^{d}} - V}\). We also show that the same phenomenon occurs for the free Laplacian on certain Zoll surfaces.  相似文献   

10.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

11.
12.
The spin density matrix of the \(\omega \) has been determined for the reaction \({\bar{p}p}\,\rightarrow \,\omega \pi ^0\) with unpolarized in-flight data measured by the Crystal Barrel LEAR experiment at CERN. The two main decay modes of the \(\omega \) into \(\pi ^0 \gamma \) and \(\pi ^+ \pi ^- \pi ^0\) have been separately analyzed for various \({\bar{p}}\)momenta between 600 and 1940 MeV/c. The results obtained with the usual method by extracting the matrix elements via the \(\omega \) decay angular distributions and with the more sophisticated method via a full partial wave analysis are in good agreement. A strong spin alignment of the \(\omega \) is clearly visible in this energy regime and all individual spin density matrix elements exhibit an oscillatory dependence on the production angle. In addition, the largest contributing orbital angular momentum of the \({\bar{p}p~}\)system has been identified for the different beam momenta. It increases from \(L^{max}_{{\bar{p}p~}}\) \(=\) 2 at 600 MeV/c to \(L^{max}_{{\bar{p}p~}}\) \(=\) 5 at 1940 MeV/c.  相似文献   

13.
We put independent model dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordström, metric, which induces an additional potential \({U_{\rm RN} \propto Q^2 r^{-2}}\). From the current bounds \({\Delta \dot \varpi}\) on any anomalies in the secular perihelion rate \({\dot \varpi}\) of Mercury and the Earth–mercury ranging Δρ, we have \({\left|Q_{\odot}\right| \lesssim 1-0.4 \times 10^{18}\ {\rm C}}\). Such constraints are ~60–200 times tighter than those recently inferred in literature. For the Earth, the perigee precession of the Moon, determined with the Lunar Laser Ranging technique, and the intersatellite ranging Δρ for the GRACE mission yield \({\left|Q_{\oplus} \right| \lesssim 5-0.4 \times 10^{14}\ {\rm C}}\). The periastron rate of the double pulsar PSR J0737-3039A/B system allows to infer \({\left|Q_{\rm NS} \right| \lesssim 5\times 10^{19}\ {\rm C}}\). According to the perinigricon precession of the main sequence S2 star in Sgr A*, the electric charge carried by the compact object hosted in the Galactic Center may be as large as \({\left|Q_{\bullet} \right| \lesssim 4\times 10^{27} \ {\rm C}}\). Our results extend to other hypothetical power-law interactions inducing extra-potentials \({U_{\rm pert} = \Psi r^{-2}}\) as well. It turns out that the terrestrial GRACE mission yields the tightest constraint on the parameter \({\Psi}\), assumed as a universal constant, amounting to \({|\Psi| \lesssim 5\times 10^{9}\ {\rm m^4\ s^{-2}}}\).  相似文献   

14.
We study a spatial birth-and-death process on the phase space of locally finite configurations \({\varGamma }^+ \times {\varGamma }^-\) over \({\mathbb {R}}^d\). Dynamics is described by an non-equilibrium evolution of states obtained from the Fokker-Planck equation and associated with the Markov operator \(L^+(\gamma ^-) + \frac{1}{\varepsilon }L^-\), \(\varepsilon > 0\). Here \(L^-\) describes the environment process on \({\varGamma }^-\) and \(L^+(\gamma ^-)\) describes the system process on \({\varGamma }^+\), where \(\gamma ^-\) indicates that the corresponding birth-and-death rates depend on another locally finite configuration \(\gamma ^- \in {\varGamma }^-\). We prove that, for a certain class of birth-and-death rates, the corresponding Fokker-Planck equation is well-posed, i.e. there exists a unique evolution of states \(\mu _t^{\varepsilon }\) on \({\varGamma }^+ \times {\varGamma }^-\). Moreover, we give a sufficient condition such that the environment is ergodic with exponential rate. Let \(\mu _{\mathrm {inv}}\) be the invariant measure for the environment process on \({\varGamma }^-\). In the main part of this work we establish the stochastic averaging principle, i.e. we prove that the marginal of \(\mu _t^{\varepsilon }\) onto \({\varGamma }^+\) converges weakly to an evolution of states on \({\varGamma }^+\) associated with the averaged Markov birth-and-death operator \({\overline{L}} = \int _{{\varGamma }^-}L^+(\gamma ^-)d \mu _{\mathrm {inv}}(\gamma ^-)\).  相似文献   

15.
Let K be a field of characteristic zero. For \({n \in \mathbb{N}^{*}}\) , let \({\mathcal{T}^{\,\prime}_{n}}\) be the vector space of non-planar rooted trees with n vertices (Foissy in Bull Sci Math 126, no. 3, 193–239; no. 4, 249–288, 2002). Let \({\vartriangleright}\) be the left pre-Lie product of insertion of a tree inside another defined on infinitesimal characters of the graded Hopf algebra \({\mathcal{H}}\) introduced by Calaque, Ebrahimi-Fard and Manchon. Let \({\mathcal{T}^{\,\prime}=\oplus_{n\geq 2}\mathcal{T}^{\,\prime}_{n}}\) . In this work, we first prove that \({(\mathcal{T}^{\,\prime}, \vartriangleright)}\) a pre-Lie algebra generated by the two ladders E 1 and E 2 where E 1 is the ladder with one edge and E 2 is the ladder with two edges. Second, we prove that \({(\mathcal{T}^{\,\prime}, \vartriangleright)}\) is not a free pre-Lie algebra, and we exhibit a family of relations.  相似文献   

16.
In this article we investigate spectral properties of the coupling \({H + V_\lambda}\), where \({H = -i\alpha \cdot \nabla+m\beta}\) is the free Dirac operator in \({\mathbb{R}^3}\), \({m > 0}\) and \({V_\lambda}\) is an electrostatic shell potential (which depends on a parameter \({\lambda \in \mathbb{R}}\)) located on the boundary of a smooth domain in \({\mathbb{R}^3}\). Our main result is an isoperimetric-type inequality for the admissible range of \({\lambda}\)’s for which the coupling \({H + V_\lambda}\) generates pure point spectrum in \({(-m, m)}\). That the ball is the unique optimizer of this inequality is also shown. Regarding some ingredients of the proof, we make use of the Birman–Schwinger principle adapted to our setting in order to prove some monotonicity property of the admissible \({\lambda}\)’s, and we use this to relate the endpoints of the admissible range of \({\lambda}\)’s to the sharp constant of a quadratic form inequality, from which the isoperimetric-type inequality is derived.  相似文献   

17.
We consider the weakly asymmetric simple exclusion process in the presence of a slow bond and starting from the invariant state, namely the Bernoulli product measure of parameter \({\rho \in (0,1)}\). The rate of passage of particles to the right (resp. left) is \({\frac{1}{2} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{1}{2} - \frac{a}{2n^{\gamma}}}\)) except at the bond of vertices \({\{-1,0\}}\) where the rate to the right (resp. left) is given by \({\frac{\alpha}{2n^\beta} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{\alpha}{2n^\beta}-\frac{a}{2n^{\gamma}}}\)). Above, \({\alpha > 0}\), \({\gamma \geq \beta \geq 0}\), \({a\geq 0}\). For \({\beta < 1}\), we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process defined on the Schwartz space if \({\gamma > \frac{1}{2}}\), while for \({\gamma = \frac{1}{2}}\) it is an energy solution of the stochastic Burgers equation. For \({\gamma \geq \beta =1}\), it is an Ornstein–Uhlenbeck process associated to the heat equation with Robin’s boundary conditions. For \({\gamma \geq \beta > 1}\), the limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat equation with Neumann’s boundary conditions.  相似文献   

18.
We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from \(\sim 36\)/fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the \((g-2)_\mu \) constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses \(M_{1,2,3}\), a common mass for the first-and second-generation squarks \(m_{\tilde{q}}\) and a distinct third-generation squark mass \(m_{\tilde{q}_3}\), a common mass for the first-and second-generation sleptons \(m_{\tilde{\ell }}\) and a distinct third-generation slepton mass \(m_{\tilde{\tau }}\), a common trilinear mixing parameter A, the Higgs mixing parameter \(\mu \), the pseudoscalar Higgs mass \(M_A\) and \(\tan \beta \). In the fit including \((g-2)_\mu \), a Bino-like \(\tilde{\chi }^0_{1}\) is preferred, whereas a Higgsino-like \(\tilde{\chi }^0_{1}\) is mildly favoured when the \((g-2)_\mu \) constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, \(\tilde{\chi }^0_{1}\), into the range indicated by cosmological data. In the fit including \((g-2)_\mu \), coannihilations with \(\tilde{\chi }^0_{2}\) and the Wino-like \(\tilde{\chi }^\pm _{1}\) or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the \(\tilde{\chi }^0_{2}\) and the Higgsino-like \(\tilde{\chi }^\pm _{1}\) or with first- and second-generation squarks may be important when the \((g-2)_\mu \) constraint is dropped. In the two cases, we present \(\chi ^2\) functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the \((g-2)_\mu \) constraint, as well as for discovering electroweakly-interacting sparticles at a future linear \(e^+ e^-\) collider such as the ILC or CLIC.  相似文献   

19.
We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of \(\mathbf{B}_c\rightarrow \mathbf{B}_n M\), with \(\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)\) and \(\mathbf{B}_n(M)\) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of \({\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})\) and \(R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)\)/\({\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)\). In addition, we obtain that \({\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}\), \({\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}\) and \({\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}\), which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.  相似文献   

20.
The \(B\rightarrow D\) transition form factor (TFF) \(f^{B\rightarrow D}_+(q^2)\) is determined mainly by the D-meson leading-twist distribution amplitude (DA) , \(\phi _{2;D}\), if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA \(\phi _{2;D}\) and its impact on \(f^{B\rightarrow D}_+(q^2)\). In this paper, we calculate the moments of \(\phi _{2;D}\) with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments \(\left\langle \xi ^n\right\rangle _D\) up to fourth order and up to dimension-six condensates are presented. At the scale \(\mu = 2 \,\mathrm{GeV}\), the values of the first four moments are: \(\left\langle \xi ^1\right\rangle _D = -0.418^{+0.021}_{-0.022}\), \(\left\langle \xi ^2\right\rangle _D = 0.289^{+0.023}_{-0.022}\), \(\left\langle \xi ^3\right\rangle _D = -0.178 \pm 0.010\) and \(\left\langle \xi ^4\right\rangle _D = 0.142^{+0.013}_{-0.012}\). Basing on the values of \(\left\langle \xi ^n\right\rangle _D(n=1,2,3,4)\), a better model of \(\phi _{2;D}\) is constructed. Applying this model for the TFF \(f^{B\rightarrow D}_+(q^2)\) under the light cone sum rules, we obtain \(f^{B\rightarrow D}_+(0) = 0.673^{+0.038}_{-0.041}\) and \(f^{B\rightarrow D}_+(q^2_{\mathrm{max}}) = 1.117^{+0.051}_{-0.054}\). The uncertainty of \(f^{B\rightarrow D}_+(q^2)\) from \(\phi _{2;D}\) is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio \(\mathcal {B}(B\rightarrow Dl\bar{\nu }_l)\) is calculated, which is consistent with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号