首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The results of molecular dynamics (MD) simulations of CdSe crystals terminated by low-index atomic planes, (100), (110) and (111), are presented. The effect of the crystal termination on the atomic arrangement (interatomic distances) at the surface and underneath the surface is examined. It is shown that the crystal lattice is distorted in lateral and normal directions to the depth of up to about 2 nm from the surface. The exact characteristic of the changes of interatomic distances is specific to the type of the atomic plane terminating the crystal lattice. At some surfaces, the very last monoatomic layer loses the long-range ordering and becomes quasi amorphous. The atoms group into randomly distributed pairs or short linear groups.
Graphical abstract
  相似文献   

2.
Despite advancements in treatment of infectious diseases, opportunistic pathogens continue to pose a worldwide threat. Identifying a source of infection/inflammation is often challenging which highlights the need of improved diagnostic agents. Using a model of local S. aureus infection, here we evaluated the potential of betamethasone or dexamethasone loaded in poly (lactic acid) nanoparticles and radiolabeled with 99mTc to detect an infection/inflammation site in vivo. A betamethasone and dexamethasone nanoparticles (NPs) with 200 and 220 nm in size, respectively, were created with a 98% 99mTc radiolabeling efficiency. When injected in infected mice, betamethasone NPs presented a higher accumulation in the infected hind paw in comparison with dexamethasone NPs. Our results suggest that this nanosystem may be a valid nanoradiopharmaceutical for the detection of inflammation/infection foci in vivo.
Graphical abstract Nanoradiopharmaceutical for inflammation
  相似文献   

3.
In this study, two different synthetic methods in aqueous solution are presented to tune the optical properties of CdTe and CdSe semiconductor nanoparticles. Additionally, the influence of different temperatures, pressures, precursor ratios, surface ligands, bases, and core components in the synthesis was investigated with regard to the particle sizes and optical properties. As a result, a red shift of the emission and absorption maxima with increasing reaction temperature (100 to 220°C), pressure (1 to 25 bar), and different ratios of core components of alloyed semiconductor nanoparticles could be observed without a change of the particle size. An increase in particle size from 2.5 to 5 nm was only achieved by variation of the mercaptocarboxylic acid ligands in combination with the reaction time and used base. To get a first hint on the cytotoxic effects and cell uptake of the synthesized quantum dots, in vitro tests mesenchymal stem cells (MSCs) were carried out.
Graphical abstract
  相似文献   

4.
This work uses linear and looped RGDfV sequences attached to the surface of small (1.8 nm in diameter) gold nanoparticles (AuNPs) to enhance the radiosensitizating effects of Cilengitide, a cyclic RGDf (NMe)V pentapeptide that targets αvβ3 integrin which is overexpressed in certain cancers. Following synthesis and purification, the AuNPs were evaluated in vitro against HUVEC, H460, and MCF7 cells in clonogenic assays using a 137Cs irradiator. Untargeted AuNPs induced no significant dose enhancement factors (DEFs) in any of the cell types when compared to radiation treatment alone, whereas all evaluated AuNPs functionalized with targeting peptides performed at least as well as controls (irradiation after Cilengitide treatment). The observed DEFs also suggest that cyclizing the linear peptides into more spatially constrained, looped structures may facilitate target binding. These greater dose enhancements merit future in vivo studies of drug-AuNP conjugates to assess the ability of the nanostructures to provide an improved therapeutic benefit over treatment with drug candidates and radiation alone.
Graphical abstract ?
  相似文献   

5.
The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate.
Graphical abstract Synthesis of catalytically active gold nanostructures mediated by a pluronic triblock copolymer
  相似文献   

6.
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
Graphical abstract Determination of hydrophobicity character of nanomaterials by measuring their affinity to engineered surfaces.
  相似文献   

7.
Presence of basic nitrogen throughout the chain of poly(2-vinylpyridine) make them alluring candidate for applications requiring chelation of heavy metals. In this study, we report the use of poly (2-vinylpyridine) (P2VP) homopolymers of varying molar masses for the stabilization of gold nanoparticles for the first time. A study based on AFM, DLS and UV-visible spectroscopy was conducted to establish a correlation of the molar mass of P2VP with the size and distribution of the gold nanoparticles. Systematic and gradual change in the absorbance intensity and shift in SPR band of gold nanoparticles were also observed upon variations in treatment temperature, concentration of polymer, residence time, pH, and electrolyte concentration. The results obtained by UV-visible spectroscopy, AFM and DLS are complementary. The size of the P2VP-stabilised AuNPs was found to be in the range of 20–130 nms. At last, the effect of the size of P2VP-stabilised AuNPs (directly related to the molar mass of P2VP) on the drug-loading efficiency is evaluated.
Graphical Abstract ?
  相似文献   

8.
The effect of interaction of low-index atomic planes, (100), (110), and (111) terminating CdSe platelet nanocrystals is examined using molecular dynamics (MD) simulations. Asymmetry of the environment of atoms at the end surface layers leads to anisotropic deformation of the cubic lattice and to a relative shift of Cd and Se sub-lattices. Interference of distortions of the crystal lattice originating at the terminal surfaces leads to changes of symmetry of the CdSe lattice in the whole sample volume. In the models, 2–3 nm thick, for all types of surfaces under examination, the initial cubic lattice symmetry gets lost in the whole sample volume.
Graphical abstract ?
  相似文献   

9.
Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles (diameter?=?11.9?±?1.0 nm). The reactions were fully regioselective with monosubstituted ethylenes and ethyl cyanoformiate, while mixtures of cycloadducts were obtained in the presence of methyl propiolate. The intervention of iron oxide nanoparticles allowed carrying out the cycloadditions at milder conditions compared to the metal-free thermal processes. A labile intermediate has been proposed to explain this behavior.
Graphical abstract Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles.
  相似文献   

10.
In recent years, two-dimensional confined catalysis, i.e., the enhanced catalytic reactions in confined space between metal surface and two-dimensional overlayer, makes a hit and opens up a new way to enhance the performance of catalysts. In this work, graphdiyne overlayer was proposed as a more excellent material than graphene or hexagonal boron nitride for two-dimensional confined catalysis on Pt(111) surface. Density functional theory calculations revealed the superiority of graphdiyne overlayer originates from the steric hindrance effect which increases the catalytic ability and lowers the reaction barriers. Moreover, with the big triangle holes as natural gas tunnels, graphdiyne possesses higher efficiency for the transit of gaseous reactants and products than graphene or hexagonal boron nitride. The results in this work would benefit future development of two-dimensional confined catalysis.
Graphical abstract
  相似文献   

11.
Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO3. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.
Graphical abstract This study reports a low-cost and easy-operated pesticide residues detection method based on hollow sea-urchin gold nanoparticles using SERS.
  相似文献   

12.
Gold nanoparticles 1.7 and 54 nm in diameters have been synthesized and functionalized successfully with their surfaces engineered using two atropisomeric capping ligands, 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (BINAP) and 1,1′-binaphthalene-2,2′-diamine (DABN), respectively. A systematic study to compare the two different gold nanoparticles is presented using multiple material characterization techniques. It was found that the two systems show different capping mechanism and hence differ in their intrinsic core and surface properties. The compound BINAP plays only surface capping agent and stabilizes the gold nanoparticles, resulting in small particle size and suppressed surface plasmon resonance absorption at 520 nm. The DABN capping ligand is different from BINAP and acts as both reducing and capping agent, causing the reduction of Au (III) to Au (0). The nucleation growth of the gold core occurs in accordance with the polymerization-passivation process by DABN, resulting in a big particle size of 20 nm. A strong surface plasmon resonance band shows a maximum peak at 564 nm, consistent with the Au core size. The simultaneous oxidative polymerization of DABN and the induced metal reduction process lead to the formation of gold nanoparticles encapsulated by a mixture of DABN oligomers or polymers.
Graphical abstract ?
  相似文献   

13.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

14.
Porous polyacrylamide hydrogel (PAM) was prepared by polymerization at room temperature. Cadmium sulfide/polyacrylamide hydrogels (CdS/PAM) was synthesized by in situ loading CdS nanoparticles and used for photocatalytic decomposition of water for the first time. The size distribution of the loaded CdS nanoparticles is 3–12 nm. We studied the enhanced photocatalytic activity and photo-corrosion inhibition of CdS/PAM the compared with pure CdS and probed the mechanism of the improvement. In particular, the CdS/PAM prepared in 0.003 M CdCl2 solution exhibited the highest hydrogen production efficiency of 2.929 mmol g?1 h?1, about 79 times that of pure CdS. The results demonstrate that the formation of new N–Cd bond and high transmittance of CdS/PAM dramatically enhance photocatalytic activity. The electron cloud of nitrogen atom can attract holes and repel photogenerated electrons, which lowers the carrier recombination probability. The results also reveal that the excellent hydrophilicity of hydrogel plays an important role in the inhibition of photocorrosion. In addition, CdS/PAM is easily recycled and processed. The present work will pave a good way for the application of smart hydrogels in the field of photocatalytic hydrogen production.
Graphical abstract ?
  相似文献   

15.
Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68?±?18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate.
Graphical abstract ?
  相似文献   

16.
A novel core–shell nanocomposite Ni–Ca@mSiO2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.
Graphical abstract A magnetic core–shell nanocomposite Ni–Ca@mSiO2 exhibited good activity, selectivity, and reusability in benzophenone selective hydrogenation.
  相似文献   

17.
Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings.
Graphical abstract Interrelationship of agglomeration, colloidal stability, and magnetic separability of nanoparticles
  相似文献   

18.
In this paper, the green synthesis of fluorescent carbon dots (CDs) via one-step hydrothermal treatment of cornstalk was investigated. This approach is facile, economical, and effective. The obtained CDs with an average diameter of 5.2 nm possess many excellent properties such as emitting blue fluorescence under UV light (365 nm), high monodispersity, good stability, excellent water dispersibility, and absolute quantum yield of 7.6%. Then, these CDs were used as sensing probes for the detection of Fe2+ and H2O2 with detection limits as low as 0.18 and 0.21 μM, respectively. This sensing platform shows advantages such as high selectivity, good precision, rapid operation, and avoiding the precipitation of iron oxyhydroxides.
Graphical abstract ?
  相似文献   

19.
This paper reported a one-step synthesis of Ag2S/Ag@MoS2 nanocomposites and its applications in the surface-enhanced Raman scattering (SERS) detection and photocatalytic degradation of organic pollutants. The nanocomposites were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammograms (CV), the Brunauer-Emmett-Teller (BET), and Fourier transforms infrared spectra (FTIR). The AgNPs were uniformly dispersed on the MoS2 nanosheets and the particle size of the AgNPs was about 10–30 nm. These Ag2S/Ag@MoS2 nanocomposites offered sensitive SERS signals for the detection of R6G with the limit of detections as low as 10?10 M. The photocatalytic activity of the composite catalyst was studied by the degradation of methylene blue (MB) dye under light illumination. The apparent rate constant of MB degradation for the obtained catalyst could reach 6.6?×?10?2 min?1, indicating that the novel Ag2S/Ag@MoS2 nanocomposites can be explored for organic pollutant’s detection and degradation.
Graphical abstract One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications
  相似文献   

20.
Single-walled carbon nanotubes (SWNTs) are 1D nanostructures with distinct physical and chemical properties that have shown great promise for applications in many fields, including biomedicine. Since for biomedical application the water solubility is crucial and SWNTs have low solubility, various methods (including polymer and biopolymer wrapping, chemical modifications) have been developed to solubilize and disperse them in water. Due to their unique optical properties such as photoluminescence in the NIR and strong resonant Raman signatures, they can be used as nanoprobes in biomedical imaging and phototherapies. Furthermore, decoration of SWNTs with noble metal nanoparticles will induce an excellent surface-enhanced Raman scattering (SERS) effect of the nanoparticles-SWNTs composites, with applications in cell imaging. Herein, we present a new and facile strategy for the DNA-assisted decoration of SWNTs with gold nanoparticles (AuNPs) and their application in SERS imaging. By ultrasonication at room temperature of SWNTs with AuNPs functionalized with synthetic DNA, SWNT-AuNPs nanocomposites with enhanced Raman signal were obtained. Among the important advantages of the proposed method are the presence of the free DNA overhangs around the SWNT-AuNPs suitable for post-synthetic modification of nanocomposite through hybridization of complementary DNA strands containing molecules of interest attached by well-developed bio-conjugation chemistry.
Graphical abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号