首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pulsejet, due to its simplicity, may be an ideal micro propulsion system. In this paper, modern computational and experimental tools are used to investigate the operation of a 15-cm overall length valveless pulsejet. Gas dynamics, acoustics and chemical kinetics are studied to gain understanding of various physical phenomena affecting pulsejet operation, scalability, and efficiency. Pressure, temperature, thrust, and frequency are measured as a function of valveless inlet and exit lengths and different geometries. At this length scale, it is necessary to run the pulsejets on hydrogen fuel. Numerical simulations are performed utilizing CFX to model the 3-D compressible vicious flow in the pulsejet using the integrated Westbrook–Dryer single step combustion model. The turbulent flow and reaction rate are modeled with the kɛ model and the Eddy Dissipation Model (EDM), respectively. Simulation results provide physical insight into the pulsejet cycle; comparisons with experimental data are discussed.  相似文献   

2.
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion and ground based power generation systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamics (CFD) simulations focused primarily on pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.  相似文献   

3.
For the analysis of the effects of fluid–structure interaction (FSI) during water hammer in piping systems, a test facility has been designed and constructed. The research objective is to show on the basis of two specific examples that the necessity of considering FSI is strongly dependent on the boundary conditions of the system. Resonance experiments on movable bends in two piping system configurations focused on junction coupling were carried out. These configurations differ in the length of the hydraulic system and in the geometry of the oscillating bend. The displacement of the bend and the pressure inside the pipe were measured for various free oscillating lengths of the bend while the rest of the piping system was restrained. The results are displayed in resonance curves and frequency spectra for the different configurations. In both cases a correlation between the pressure and the displacement spectrum shows a transfer of momentum from the fluid to the structure, but only in the configuration with the long oscillating pipe section can a reaction of the fluid on the motion of the structure be identified. Frequency shifts of the pressure and a splitting of the pressure peak were observed. The time signals confirm that the effects of FSI are most significant in one system configuration which is strongly influenced by the bend geometry. Furthermore a parameter is presented which quantifies the effects of junction coupling based on the geometrical and hydraulic properties of the bend and the system.  相似文献   

4.
Three-dimensional transient responses of porous media under moving surface impulses of finite frequency components are theoretically studied. We discuss three free-surface stiffness conditions, such as fully permeable—‘open pore’, fully impermeable—‘closed pore’, and partially permeable boundaries, that are not explicitly discussed before. The transient responses of the solid vertical displacement and the pore fluid pressure triggered by the moving impulses on the surface are particularly investigated in different typical surface stiffness, moving impulse velocities, material permeabilities and impulse peak frequencies. It is concluded that the R1 surface wave carries the strongest energy as that for stationary source configurations. Moreover, it is more sensitive to surface stiffness condition than body waves represented in the responses of the corresponding wave forms of obvious different amplitudes and arrival time. Furthermore, the apparent velocity of the moving impulse pointing toward the fixed receiver may cause ‘blue shift’ in frequency. The higher velocity triggers more obvious frequency shift. For the moving impulse of low peak frequency, this shift becomes much serious. The lateral velocity of the moving impulse to the receiver may also twist the received wave forms, especially for the impulse of low peak frequency.  相似文献   

5.
闫伟阳  潘旭海  汪志雷  华敏  蒋益明  王清源  蒋军成 《爆炸与冲击》2019,39(11):115402-1-115402-10

为了探究高压氢气泄漏发生自燃时所需的临界初始释放压力随管道长度的变化规律,了解管内自燃火焰向管外喷射火焰转变的发展过程,本文利用压力、光电以及高速摄像等测试系统展开实验研究。实验结果表明:当管道长度相同,初始释放压力较低时,氢气泄漏不容易发生自燃;随着管道长度的增加,氢气发生自燃时的临界初始释放压力先缓慢减小后迅速增大;当管道长度一定时,初始释放压力越大,激波传播速度越快,氢气管内自燃的位置距离爆破片越近;气流通过激波马赫盘后,火焰燃烧加剧;随着时间的增加,火焰长度呈现先增大后逐渐减小的变化趋势,喷射火焰尖端的平均传播速度逐渐减小;火焰宽度呈现先增大后迅速减小至稳定值的变化规律。

  相似文献   

6.
As the world energy demand and environmental concern continue to grow, syngas is expected to play an important role in future energy production. It represents a viable energy source, particularly for stationary power generation, since it allows for a wide flexibility in fossil fuel sources, and since most of the harmful contaminants and pollutants can be removed in the post-gasification process prior to combustion. In this work, two typical mixtures of H2, CO, CH4, CO2 and N2 have been considered as representative of the producer gas coming from wood gasification, and its turbulent combustion at engine-like conditions is made in a rapid compression machine in order to improve current knowledge and provide reference data for modeling and simulation of internal combustion engines. Methane as main constituent of the natural gas is used as reference fuel for comparison reasons. Single compression and compression- expansion events were performed as well direct light visualizations from chemiluminescence emission. There is an opposite behavior of the in-cylinder pressure between single compression and compression-expansion strokes. For single compression, peak pressure decreases as the ignition delay increases. In opposite, for compression-expansion the peak pressure increases as the ignition delay increases. This opposite behavior has to do with the combustion duration under constant volume conditions. Conclusion can be drawn that higher pressures are obtained with methane-air mixture in comparison to both typical syngas compositions. These results could be endorsed to the heat of reaction of the fuels, air to fuel ratio and burning velocity. Another major finding is that syngas typical compositions are characterized by high ignition timings due to its low burning velocities. This could compromise the use of typical syngas compositions on high rotation speed engines.  相似文献   

7.
曹勇  郭进  胡坤伦  邵珂  杨帆 《爆炸与冲击》2016,36(6):847-852
利用高速纹影和压力测试系统对不同点火位置及不同破膜压力条件下氢气-空气预混气的泄爆特性进行研究。研究结果表明:在所有情况下,中心点火时火焰传播速率和面积最大,产生了最大的内部压力峰值,尾端点火时火焰传播速率和面积次之,产生的内部压力峰值也次之;前端点火时火焰传播速率和面积均最小,产生了最小的内部压力峰值。前端点火时,容器内部压力出现了3个明显的压力峰值,中心和尾端点火时,只能观察到第1个和第3个压力峰值。并且,随着破膜压力的增加,中心和尾端点火时,火焰面积均增大,产生的内部压力峰值均增大。在前端点火的条件下出现了声学振荡的现象,对内部压力产生了显著的影响。  相似文献   

8.
Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension.Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. Moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.  相似文献   

9.
This study investigates the interference effects between two rectangular-section high-rise buildings by wind tunnel experiments, focusing on local peak pressure coefficients. Wind tunnel experiments were carried out under 72 wind incidence angles for various configurations. Two building arrangements were considered: parallel and perpendicular. To evaluate the interference effects for local peak pressures in detail, interference factors for largest positive and smallest negative peak pressures are presented and discussed. The results show that interference effects greatly depend on configuration and wind direction. Unfavorable positions are generally concentrated at the edges and corners of a building. Flow visualization was also conducted to check the flow field between two buildings.  相似文献   

10.
An experimental study has been conducted to determine the effect of twisted-tape swirl generators on adiabatic and diabatic two-phase flow pressure drops in vertical straight tubes. Tape-twist ratios (length for 180° twist/inside tube diameter) of 3.94, 8.94, and 13.92 were tested with R-113 over a range of pressures, mass velocities, qualities, and heat fluxes. Empty tube refcrence data were successfully predicted with a correlation from the literature. The twisted tape data were successfully correlated by using the hydraulic diameter and a single-phase swirl flow friction factor in the empty tube correlation. Data from the literature also were predicted well with this correlation.  相似文献   

11.
We present experimental results obtained in a turbulent boundary layer at a Mach number of 2.3 impinged by an oblique shock wave. Strong unsteadiness is developed in the interaction, involving several frequency ranges which can extend over two orders of magnitude. In this paper, attention is focused on the links between the low-frequency shock motions and the separation bubble, in particular phase relationships are evaluated. An interpretation based on a simple scheme of the streamwise evolution of the instantaneous pressure is proposed. As it is mainly based on the pressure signal properties inside the region of the shock oscillation, it may be expected that it will still be relevant for different configurations of shock-induced separation as compression ramp, blunt bodies, or over expanded nozzles.  相似文献   

12.
In order to evaluate the direct and indirect contributions to the total combustion noise emission, a combustion chamber consisting of a swirl burner and an exit nozzle of Laval-shape, representing a gas turbine combustor, is investigated by means of experiments and large eddy simulation. Focused on the isothermal flow case first and encouraged by a good overall agreement between the LES and the experimental data for the flow field, a first characterisation of the flow with respect to noise sources is performed. To analyse acoustic properties of the flow, time and length scales are evaluated inside the combustor. Furthermore, the evidence for the existence of a precessing vortex core (PVC), typical for configurations with swirl, is revealed. Finally, the effect of the PVC on the flow inside the Laval nozzle is discussed.  相似文献   

13.
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the convection speed of pressure fluctuations in the separated shear layer are measured to be between 35 and 50% of the edge velocity, consistent with predictions of linear stability theory for separated shear layers.  相似文献   

14.
Experiments on a water cavitating orifice were conducted to investigate the influence of pressure and temperature on flow regime transition due to cavitation. The thermal effects could be important in cases with cryogenic cavitation or hot fluid injection. The investigations were based on CCD observations and a pressure fluctuations frequency analysis.The high-speed photographic recordings were used to analyze the cavitation evolution and individuate the frequency content of the two-phase flow by processing the pixel-intensity time-series data.The cavitating structures showed different behaviors and characteristics with variations in operating conditions, as the pressure inside the orifice and the flow temperature .The flow regime map for the cavitating flow was obtained using experimental observations to analyze the occurrence of the different two-phase flow regime transitions at various operating conditions.As the pressure at the orifice inlet increased, at the same downstream pressure, cavitation inception occurred. The decrease of the cavitation number brought a significant increase in cavitation zone extension. As the pressure drop inside the orifice increased, the cavitation was characterized by an evident increase in cavitation zone length to the outlet of the orifice. With a further cavitation number decrease, the transition to jet cavitation was evident.The temperature influenced both the cavitation intensity and the cavitation number at which different two-phase flow regime transitions occurred, which tended to increase with temperature.The vapor fraction was estimated using an image processing algorithm.The frequency content given by the pressure fluctuations was analyzed and compared with the frequency spectra obtained from the visual observations. The behavior of the different cavitating flows could be correlated to the frequency spectrum of the pressure fluctuations measured upstream and downstream of the orifice. The cavitation number reduction and consequent increase in cavitating area width were related to a corresponding significant increase in the amplitude of typical frequency components. The transition to jet cavitation was characterized by a significant increase in the first peak in the frequency spectrum; weaker spectral peaks were also present at high cavitation numbers.  相似文献   

15.
An experiment is carried out to investigate the characteristics of the augmentation of heat transfer and pressure drop by different strip-type inserts in small tube having an inside diameter of 2.0 mm. The effects of the imposed wall heat flux, mass flux, strip inserts with various configurations (heights, widths, pitches) on the measured augmentative heat transfer and pressure drop are examined in detail. In order to obtain insight into the fluid flow phenomena, flow visualization was also made to observe the detailed fluid flow characteristics of the present tubes inserted with strip-type inserts. In addition, comparisons are made with a plain tube having the same length, heat transfer area and experimental conditions. The measured heat transfer coefficients and pressure drops for this small pipe are also emphasized to compare with those for larger pipes. Furthermore, in order to compare results from the different configurations of strip-type inserts, several enhancement factors and performance ratios are defined to account for the effects of augmentation. Moreover, correlation equations for the heat transfer coefficient and pressure drop of the present study are proposed.The financial support extended by the National Science Council of the Republic of China through grant No. NSC-89-2212-E-230-004.  相似文献   

16.
This study applies particle image velocimetry (PIV) to an optical spark-ignition direct-injection engine in order to investigate the effects of fuel-injection on in-cylinder flow. Five injection timing combinations, each employing a stoichiometric 1:1 split ratio double-injection strategy, were analysed at an engine speed of 1200 RPM and an intake pressure of 100 kPa. Timings ranged from two injections in the intake stroke to two injections in the compression stroke, resulting in a variety of in-cylinder environments from well-mixed to highly turbulent. PIV images were acquired at a sampling frequency of 5 kHz on a selected swirl plane. The flow fields were decomposed into mean and fluctuating components via two spatial filtering approaches — one using a fixed 8 mm cut-off length, and the other using a mean flow speed scaled cut-off length which was tuned in order to match the turbulent kinetic energy (TKE) profile of a 300 Hz temporal filter. From engine performance tests, the in-cylinder pressure traces, indicated mean effective pressure (IMEP), and combustion phasing data showed very high sensitivity to injection timing variations. To explain the observed trend, correspondence between the measured flow and these performance parameters was evaluated. An expected global trend of increasing turbulence with retarded injection timing was clearly observed; however, relationships between TKE and burn rate were not as obvious as anticipated, suggesting that turbulence is not the predominant factor associated with injection timing variations which impacts engine performance. Stronger links were observed between bulk flow velocity and burn rate, particularly during the early stages of flame development. Injection timing was also found to have a significant impact on combustion stability, where it was observed that low-frequency flow fluctuation intensity revealed strong similarities with the coefficient of variance (CoV) of IMEP, suggesting that these fluctuations are a suitable measure of cycle-to-cycle variation — likely due to the influence of bulk flow on flame kernel development.  相似文献   

17.
 Experiments have been performed to quantify the isothermal and combusting flows downstream of a plane sudden-expansion. The detailed measurements correspond to an area expansion ratio of 2.86 and a Reynolds number of 20000, and the combusting flows comprised premixed methane and air over a range of equivalence ratios with emphasis on values of 0.72 and 0.92 which gave rise to smooth and rough combustion, respectively. The results show that the extent of asymmetry of the isothermal flows was reduced by coupling the pressures between the two recirculation regions, and by imposing oscillations at the half-wave or full-wave frequency of the duct, and by combustion. Periodic variations of flame shape, velocities, acceleration, and temperature were observed in sympathy with the dominant pressure oscillation of rough combustion, and the length of the recirculation zones varied from less than 0.5 to 3 step heights. Rich and lean limits were established for combustion within the duct and, whereas the flame blew off at the lean limit, it detached from the expansion at the rich limit and stabilised on the flange at the duct exit. Within these limits, there were ranges of equivalence ratios over which the flame stabilised on one of the two steps with incomplete combustion. The imposition of oscillations narrowed the range of equivalence ratios over which the flame could be stabilised but reduced the equivalence ratio of the lean limit at which the flame could be stabilised on both steps and the effect increased with amplitude and was greatest when the frequency of the imposed oscillations corresponded to that of the half-wave in the duct. An increase in the amplitude of flow oscillations, natural or imposed, caused the concentrations of NO x measured at the duct exit to decrease. Active control of flows with high amplitude of oscillations produced the expected reductions, but not over the entire measured range of equivalence ratio, and the imposition of pressure oscillations at the second harmonic of the half-wave frequency had a greater effect and over a wider range. Received: 14 September 1998 / Accepted: 19 February 1999  相似文献   

18.
In recent years, the NO x emissions of heavy duty gas turbine burners have been significantly reduced by introducing premixed combustion. These highly premixed burners are known to be prone to combustion oscillations. In this paper, investigations of a single model gas turbine burner are reported focusing on thermo-acoustic instabilities and their interaction with the periodic fluctuations of the velocity and pressure. Phase-locked optical measurement techniques such as LDA and LIF gave insight into the mechanisms.Detailed investigations of a gas turbine combustor rig revealed that the combustor as well as the air plenum oscillate in Helmholtz modes. These instabilities could be attributed to the phase lag of the pressure oscillations between the air plenum and the combustor, which causes an acceleration and deceleration of the air flow through the burner and, therefore, alternating patterns of fuel rich and lean bubbles. When these bubbles reach the reaction zone, density fluctuations are generated which in turn lead to velocity fluctuations and, hence, keep up the pressure oscillations.With increasing the equivalence ratio strong combustion oscillations could be identified at the same frequency. Similarly as with weak oscillations, Helmholtz mode pressure fluctuations are present but the resulting velocity fluctuations in the combustor can be described as a pumping motion of the flow. By the velocity fluctuations the swirl stabilization of the flame is disturbed. At the same time, the oscillating pressure inside the combustor reaches its minimum value. Shortly after the flame expands again, the pressure increases inside the combustor. This phenomenon which is triggered by the pressure oscillations inside the air plenum seems to be the basic mechanism of the flame instability and leads to a significant increase of the pressure amplitudes.  相似文献   

19.
An experimental investigation to understand the mechanisms of dynamic buckling instability in cylindrical structures due to underwater explosive loadings is conducted. In particular, the effects of initial hydrostatic pressure coupled with a dynamic pressure pulse on the stability of metallic cylindrical shells are evaluated. The experiments are conducted at varying initial hydrostatic pressures, below the critical buckling pressure, to estimate the threshold after which dynamic buckling will initiate. The transient underwater full-field deformations of the structures during shock wave loading are captured using high-speed stereo photography coupled with modified 3-D Digital Image Correlation (DIC) technique. Experimental results show that increasing initial hydrostatic pressure decreases the natural vibration frequency of the structure indicating loss in structural stiffness. DIC measurements reveal that the initial structural excitations primarily consist of axisymmetric vibrations due to symmetrical shock wave loading in the experiments. Following their decay after a few longitudinal reverberations, the primary mode of vibration evolves which continues throughout later in time. At the initial hydrostatic pressures below the threshold value, these vibrations are stable in nature. The analytical solutions for the vibration frequency and the transient response of cylindrical shell are discussed in the article by accounting for both (1) the added mass effect of the surrounding water and (2) the effect of initial stress on the shell imposed by the hydrostatic pressure. The analytical solutions match reasonably well with the experimental vibration frequencies. Later, the transient response of a cylindrical shell subjected to a general underwater pressure wave loading is derived which leads to the analytical prediction of dynamic stability.  相似文献   

20.
A. Abe  H. Mimura  H. Ishida  K. Yoshida 《Shock Waves》2007,17(1-2):143-151
The effect of shock pressures on the inactivation of a marine Vibrio sp. was studied experimentally and numerically. In the experiment, an aluminum impactor plate accelerated by a gas gun was used to induce shock waves in a sealed aluminum container with cell suspension liquid inside. The shock pressures in the container were measured by a piezofilm gauge. Several 10–100 MPa of pressure were measured at the shock wave front. An FEM simulation, using the Johnson–Cook model for solid aluminum and the Tait equation for the suspension liquid, was carried out in order to know the generation mechanism of shock pressures in the aluminum container. The reflection, diffraction and interaction of shock waves at the solid–liquid boundaries in the aluminum container were reasonably predicted by the numerical simulation. The changes in shock pressures obtained from the computational simulation were in good agreement with those from the experiment. The number of viable cells decreased with the increase of peak pressures of the shock waves. Peak pressures higher than 200 MPa completely inactivated the cells. At this pressure, the cell structures were deformed like the shape of red blood cells, and some proteins leaked from the cells. These results indicate that the positive and negative pressure fluctuations generated by shock waves contribute to the inactivation of the marine Vibrio sp.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号