首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a polynomial P(z) of degree n having no zeros in |z| < 1, it was recently proved in [9] that
$$\left| {{z^s}{P^{\left( s \right)}}\left( z \right) + \beta \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{{{2^s}}}P\left( z \right)} \right| \leqslant \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{2}\left( {\left| {1 + \frac{\beta }{{{2^s}}}} \right| + \left| {\frac{\beta }{{{2^s}}}} \right|} \right)\mathop {\max }\limits_{\left| z \right| = 1} \left| {P\left( z \right)} \right|$$
for every β ∈ C with |β| ≤ 1, 1 ≤ sn and |z| = 1. In this paper, we obtain the L p mean extension of the above and other related results for the sth derivative of polynomials.
  相似文献   

2.
In this paper, we study the existence of positive entire large and bounded radial positive solutions for the following nonlinear system
$$\left\{ {\begin{array}{*{20}c}{S_{k_1 } \left( {\lambda \left( {D^2 u_1 } \right)} \right) + a_1 \left( {\left| x \right|} \right)\left| {\nabla u_1 } \right|^{k_1 } = p_1 \left( {\left| x \right|} \right)f_1 \left( {u_2 } \right)} & {for x \in \mathbb{R}^N ,} \\{S_{k_2 } \left( {\lambda \left( {D^2 u_2 } \right)} \right) + a_2 \left( {\left| x \right|} \right)\left| {\nabla u_2 } \right|^{k_2 } = p_2 \left( {\left| x \right|} \right)f_2 \left( {u_1 } \right)} & {for x \in \mathbb{R}^N .} \\\end{array} } \right.$$
Here \({S_{{k_i}}}\left( {\lambda \left( {{D^2}{u_i}} \right)} \right)\) is the k i -Hessian operator, a 1, p 1, f 1, a 2, p 2 and f 2 are continuous functions.
  相似文献   

3.
We calculate the sharp bounds for some q-analysis variants of Hausdorff type inequalities of the form
$$\int_0^{ + \infty } {{{\left( {\int_0^{ + \infty } {\frac{{\phi \left( t \right)}}{t}f\left( {\frac{x}{t}} \right){d_q}t} } \right)}^p}{d_q}x} \leqslant {C_\phi }\int_0^b {{f^p}\left( t \right)} {d_q}t$$
. As applications, we obtain several sharp q-analysis inequalities of the classical positive integral operators, including the Hardy operator and its adjoint operator, the Hilbert operator, and the Hardy-Littlewood-Pólya operator.
  相似文献   

4.
Let (F n ) n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as
$${\left[ {\begin{array}{*{20}{c}} m \\ k \end{array}} \right]_F} = \frac{{{F_{m - k + 1}} \cdots {F_{m - 1}}{F_m}}}{{{F_1} \cdots {F_k}}}$$
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±2 (mod 5), then \(p{\left| {\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]} \right._F}\) for all integers a ≥ 1. In 2015, Marques and Trojovský worked on the p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all a ≥ 1 when p ≠ 5. In this paper, we shall provide the exact p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a, b ≥ 1 and for all prime number p.
  相似文献   

5.
Call a sequence of k Boolean variables or their negations a k-tuple. For a set V of n Boolean variables, let T k (V) denote the set of all 2 k n k possible k-tuples on V. Randomly generate a set C of k-tuples by including every k-tuple in T k (V) independently with probability p, and let Q be a given set of q “bad” tuple assignments. An instance I = (C,Q) is called satisfiable if there exists an assignment that does not set any of the k-tuples in C to a bad tuple assignment in Q. Suppose that θ, q > 0 are fixed and ε = ε(n) > 0 be such that εlnn/lnlnn→∞. Let k ≥ (1 + θ) log2 n and let \({p_0} = \frac{{\ln 2}}{{q{n^{k - 1}}}}\). We prove that
$$\mathop {\lim }\limits_{n \to \infty } P\left[ {I is satisfiable} \right] = \left\{ {\begin{array}{*{20}c} {1,} & {p \leqslant (1 - \varepsilon )p_0 ,} \\ {0,} & {p \geqslant (1 + \varepsilon )p_0 .} \\ \end{array} } \right.$$
  相似文献   

6.
Let {X n }n?≥?1 be a sequence of strictly stationary m-dependent random variableswith EX1 = 0 and \( \mathrm{E}{X}_1^2<\infty \), and let (b n ) be an increasing sequence of positive numbers such that b n ?↑?∞ and \( {b}_n/\sqrt{n}\downarrow 0\kern0.5em \mathrm{as}\kern0.5em n\to \infty \). We establish a moderate deviation principle of \( {\left({b}_n\sqrt{n}\right)}^{-1}{\sum}_{i=1}^n{X}_i \) under the condition
$$ \underset{n\to \infty }{\lim \sup}\frac{1}{b_n^2}\log \left[n\mathbf{P}\left(\left|{X}_1\right|>{b}_n\sqrt{n}\right)\right]=-\infty, $$
which is weaker than the classical exponential integrability condition. The results in the present paper weaken the assumptions of Chen [5] and extend partially the results of Eichelsbacher and Löwe [10].  相似文献   

7.
In this paper we consider the random r-uniform r-partite hypergraph model H(n 1, n 2, ···, n r; n, p) which consists of all the r-uniform r-partite hypergraphs with vertex partition {V 1, V 2, ···, V r} where |V i| = n i = n i(n) (1 ≤ i ≤ r) are positive integer-valued functions on n with n 1 +n 2 +···+n r = n, and each r-subset containing exactly one element in V i (1 ≤ ir) is chosen to be a hyperedge of H pH (n 1, n 2, ···, n r; n, p) with probability p = p(n), all choices being independent. Let
$${\Delta _{{V_1}}} = {\Delta _{{V_1}}}\left( H \right)$$
and
$${\delta _{{V_1}}} = {\delta _{{V_1}}}\left( H \right)$$
be the maximum and minimum degree of vertices in V 1 of H, respectively;
$${X_{d,{V_1}}} = {X_{d,{V_1}}}\left( H \right),{Y_{d,{V_1}}} = {Y_{d,{V_1}}}\left( H \right)$$
,
$${Z_{d,{V_1}}} = {Z_{d,{V_1}}}\left( H \right)and{Z_{c,d,{V_1}}} = {Z_{c,d,{V_1}}}\left( H \right)$$
be the number of vertices in V 1 of H with degree d, at least d, at most d, and between c and d, respectively. In this paper we obtain that in the space H(n 1, n 2, ···, n r; n, p),
$${X_{d,{V_1}}},{Y_{d,{V_1}}},{Z_{d,{V_1}}}and{Z_{c,d,{V_1}}}$$
all have asymptotically Poisson distributions. We also answer the following two questions. What is the range of p that there exists a function D(n) such that in the space H(n 1, n 2, ···, n r; n, p),
$$\mathop {\lim }\limits_{n \to \infty } P\left( {{\Delta _{{V_1}}} = D\left( n \right)} \right) = 1$$
? What is the range of p such that a.e., H pH (n 1, n 2, ···, n r; n, p) has a unique vertex in V 1 with degree
$${\Delta _{{V_1}}}\left( {{H_p}} \right)$$
? Both answers are p = o (log n 1/N), where
$$N = \mathop \prod \limits_{i = 2}^r {n_i}$$
. The corresponding problems on
$${\delta _{{V_i}}}\left( {{H_p}} \right)$$
also are considered, and we obtained the answers are p ≤ (1 + o(1))(log n 1/N) and p = o (log n 1/N), respectively.
  相似文献   

8.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

9.
Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family
$\mathcal{F}\left( {k,q} \right) = \left\{ {K \subseteq \left[ n \right]:\left| K \right| \equiv k(mod q)} \right\}$
We study certain inclusion matrices attached to F(k,q) over the field\(\mathbb{F}_p \). We show that if l≤q?1 and 2ln then
$rank_{\mathbb{F}_p } I(\mathcal{F}(k,q),\left( {\begin{array}{*{20}c} {\left[ n \right]} \\ { \leqslant \ell } \\ \end{array} } \right)) \leqslant \left( {\begin{array}{*{20}c} n \\ \ell \\ \end{array} } \right)$
This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.  相似文献   

10.
An edge-coloring of a graph G is an assignment of colors to all the edges of G. A g c -coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v) times. The maximum integer k such that G has a g c -coloring with k colors is called the g c -chromatic index of G and denoted by \(\chi\prime_{g_{c}}\)(G). In this paper, we extend a result on edge-covering coloring of Zhang and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy \(\chi\prime_{g_{c}}\)(G) = δ g (G), where \(\delta_{g}\left(G\right) = min_{v\epsilon V (G)}\left\{\lfloor\frac{d\left(v\right)}{g\left(v\right)}\rfloor\right\}\).  相似文献   

11.
12.
Let C(M) be the space of all continuous functions on M? ?. We consider the multiplication operator T: C(M) → C(M) defined by Tf(z) = zf(z) and the torus
$$O(M) = \left\{ {f:M \to \mathbb{C} \ntrianglelefteq \left\| f \right\| = \left\| {\frac{1}{f}} \right\| = 1} \right\}$$
. If M is a Kronecker set, then the T-orbits of the points of the torus ½O(M) are dense in ½O(M) and are ½-dense in the unit ball of C(M).
  相似文献   

13.
For integers m > r ≥ 0, Brietzke (2008) defined the (m, r)-central coefficients of an infinite lower triangular matrix G = (d, h) = (dn,k)n,k∈N as dmn+r,(m?1)n+r, with n = 0, 1, 2,..., and the (m, r)-central coefficient triangle of G as
$${G^{\left( {m,r} \right)}} = {\left( {{d_{mn + r,\left( {m - 1} \right)n + k + r}}} \right)_{n,k \in \mathbb{N}}}.$$
It is known that the (m, r)-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array G = (d, h) with h(0) = 0 and d(0), h′(0) ≠ 0, we obtain the generating function of its (m, r)-central coefficients and give an explicit representation for the (m, r)-central Riordan array G(m,r) in terms of the Riordan array G. Meanwhile, the algebraic structures of the (m, r)-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of m and r. As applications, we determine the (m, r)-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.
  相似文献   

14.
In this paper we give a new alternative proof of the local higher integrability in Orlicz spaces of the gradient for weak solutions of quasilinear parabolic equations of p-Laplacian type
$$\begin{array}{ll} u_t-\text{div} \left( \left | \nabla u\right|^{ p-2 } \nablau\right)=\text{div} \left(| \mathrm{ \bf f}|^{p-2} \mathrm{ \bf f}\right)\quad {\rm in}~\Omega\times (0,T] \end{array}$$
for any p > 0. Moreover, we point out that our results are homogeneousregularity estimates in Orlicz spaces and improve the known results for such equations by using some new techniques. Actually, our results can be extended to the global estimates and cover a more general class of degenerate/singular parabolic problems of p-Laplacian type.
  相似文献   

15.
We consider the following Toda system where γ i >?1, δ 0 is Dirac measure at 0, and the coefficients a ij form the standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify the solutions and obtain the quantization result:
$\sum_{j=1}^n a_{ij}\int_{\mathbb{R}^2}e^{u_j} dx = 4\pi(2+\gamma _i+\gamma_{n+1-i}), \quad\forall\;1\leq i \leq n.$
This generalizes the classification result by Jost and Wang for γ i =0, \(\forall\;1\leq i\leq n\). (ii) We prove that if γ i +γ i+1+?+γ j ?? for all 1≤ijn, then any solution u i is radially symmetric w.r.t. 0. (iii) We prove that the linearized equation at any solution is non-degenerate. These are fundamental results in order to understand the bubbling behavior of the Toda system.
  相似文献   

16.
A finite p-group P is called resistant if, for any finite group G having P as a Sylow p-group, the normalizer N G (P) controls p-fusion in G. Let P be a central extension as
$$1 \to {\mathbb{Z}_{{p^m}}} \to P \to {\mathbb{Z}_p} \times \cdots {\mathbb{Z}_p} \to 1,$$
and |P′| ≤ p, m ≥ 2. The purpose of this paper is to prove that P is resistant.
  相似文献   

17.
We investigate the nonlinear Schrödinger equation iu t u+|u| p?1 u = 0with 1+ 4/N < p < 1+ 4/N?2 (when N = 1, 2, 1 + 4/N < p < ∞) in energy space H 1 and study the divergent property of infinite-variance and nonradial solutions. If \(M{\left( u \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( u \right) \prec M{\left( Q \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( Q \right)\) and \(\left\| {{u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}\left\| {\nabla {u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}{\left\| {\nabla Q} \right\|_2}\), then either u(t) blows up in finite forward time or u(t) exists globally for positive time and there exists a time sequence t n → +∞ such that \({\left\| {\nabla u\left( {{t_n}} \right)} \right\|_2} \to + \infty \). Here Q is the ground state solution of ?(1?s c )QQ+Q p?1 Q = 0. A similar result holds for negative time. This extend the result of the 3D cubic Schrödinger equation obtained by Holmer to the general mass-supercritical and energy-subcritical case.  相似文献   

18.
Let G be a simple graph, let d(v) denote the degree of a vertex v and let g be a nonnegative integer function on V (G) with 0 ≤ g(v) ≤ d(v) for each vertex vV (G). A g c -coloring of G is an edge coloring such that for each vertex vV (G) and each color c, there are at least g(v) edges colored c incident with v. The g c -chromatic index of G, denoted by χ′g c (G), is the maximum number of colors such that a gc-coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g (G) or δ g (G) ? 1, where \({\delta _g}\left( G \right) = \mathop {\min }\limits_{v \in V\left( G \right)} \left\lfloor {d\left( v \right)/g\left( v \right)} \right\rfloor \). A graph G is nearly bipartite, if G is not bipartite, but there is a vertex uV (G) such that G ? u is a bipartite graph. We give some new sufficient conditions for a nearly bipartite graph G to have χ′g c (G) = δ g (G). Our results generalize some previous results due to Wang et al. in 2006 and Li and Liu in 2011.  相似文献   

19.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

20.
Results on the solvability of boundary integral equations on a plane contour with a peak obtained in collaboration with V.G. Maz’ya are developed. Earlier, it was proved that, on a contour Γ with an outward peak, the operator of the boundary equation of the Dirichlet boundary value problem maps the space ? p, β + 1 (Γ) continuously onto \(\mathcal{N}_{p,\beta } (\Gamma )\). The norm of a function in ? p, β (Γ) is defined as
, provided that the peak is at the origin. In this case, the norms on the spaces \(\mathcal{N}_{p,\beta }^ \mp (\Gamma )\) are defined by
, where q ± are the intersection points of Γ with the circle {z: |z| = |q|} and δ > 0 is a fixed small number. On a contour with an inward peak, the operator of the boundary equation of the Dirichlet problem continuously maps ? p, β + 1 (Γ) onto ? p, β(Γ), where ? p, β(Γ) is the direct sum of \(\mathcal{N}_{p,\beta }^ + (\Gamma )\) (Γ) and the space
(Γ) of functions on Γ of the form p(z) = Σ k = 0 m t (k)Rez k with the parameter m = [μ ? β ? p ?1]. The operator I ? 2W of the boundary integral equation of plane elasticity theory, where W is the elastic double-layer potential, is considered. The main result is that the operator I ? 2W continuously maps the space ? p, β + 1 × ? p, β + 1(Γ) to the space \(\mathcal{N}_{p,\beta }^ - \times \mathcal{N}_{p,\beta }^ - (\Gamma )\).
On a contour with an inward peak, the obtained representation of the operator I ? 2W and theorems on the boundedness of auxiliary integral operators imply that the images of vector-valued functions from ? p, β + 1 × ? p, β + 1(Γ) have components representable as sums of functions from the spaces \(\mathcal{N}_{p,\beta }^ - (\Gamma )\)(Γ) and ? p, β(Γ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号