首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.  相似文献   

2.
A new method for the simultaneous determination of the distribution of particle mass density and the distribution of particle size with a technique with only a single measurement is presented. The basic idea of the new optical method is the analysis of gravitational particle settling by a digital image acquisition system. Individual particles illuminated by a laser light sheet are tracked by a continuously operating CCD camera. The projected area, shape factors and the centre of gravity are detected during the sedimentation process from a series of images with a constant time spread. As the algorithm is based on single particle tracking, the heterogeneity of the sample can be taken into account. From these measured particle characteristics, particle size and settling rate are calculated. Thus particle mass density is obtained taking into account also the influence of particle shape on the settling process. This method, which we name sedimentation image analysis (SIA), is particularly suitable for the characterization of heterogeneous material, e.g. soil, in the micrometer range.  相似文献   

3.
Motivated by a need to improve the representation of short-range interaction forces in hybrid direct numerical simulation of interacting cloud droplets, an efficient method for treating the aerodynamic interaction of two spherical particles settling under gravity is developed. An effort is made to ensure the accuracy of our method for any inter-particle separation by considering three separation ranges. The first is the long-range interaction where a multipole method is applied. After a decomposition into six simple configurations, explicit formulae for drag forces and torques are derived from an approximate Force–Torque–Stresslet (FTS) formulation. The FTS formulation is found to be accurate when the separation distance normalized by the average radius is larger than 5. The second range concerns the short-range interaction where the interaction force could be very large. Leading-order lubrication expansions are employed for this range and are found to be accurate when the normalized separation is less than about 0.01. Finally, for the intermediate range where no simple method is available, a third-order polynomial fitting is proposed to bridge the treatments for long-range and short-range interactions. After optimizing the precise form of polynomial fitting and matching locations, the force representation is found to be highly accurate when compared with the exact solution for Stokes flows. Using this method, collision efficiencies of cloud droplets sedimenting under gravity have been calculated. It is shown that the results of collision efficiency are in excellent agreement with results based on the exact Stokes flow solution. Collision efficiency results are also compared to previous results to further illustrate the accuracy of our calculations. The effects of particle rotation and the attractive van der Waals force on the collision efficiency are also studied. The efficient force representation developed here is more general than the usual lubrication expansion and thus can serve as a better approach to correct unresolved short-range interactions in particle-resolved simulations.  相似文献   

4.
The combined mechanisms of Brownian diffusion and gravity settling are considered to investigate the transport and deposition of particles in an inclined rectangular channel in the laminar flow regime. The exact analytical solution for particle concentration is obtained with some reasonable transformations and the conventional method of separation of variables. The effects of Peclet number, depositional parameter, incline angle, and uphill and downhill airflows on the mean concentration of particles are discussed in detail. The results indicate that the exact solution obtained in the present study can describe the transport and deposition behavior of particles due to the combined mechanisms throughout a channel at any inclination angle.  相似文献   

5.
B.U. Felderhof 《Physica A》2008,387(24):5991-5998
The transient settling in a viscous incompressible fluid of a spherical dilute cloud of particles starting from rest under the influence of a small constant applied force is studied in a continuum model on the basis of the linearized Navier-Stokes equations. Explicit expressions are derived for the motion of the cloud and for the flow velocity and pressure of the fluid. Equations of transient Stokesian dynamics are formulated that allow numerical study of the motion of a dilute cloud of particles of arbitrary initial configuration.  相似文献   

6.
杨晋朝  夏智勋  胡建新 《物理学报》2012,61(16):164702-164702
建立了镁颗粒群着火的一维非稳态有限影响体模型, 数值模拟颗粒群中镁颗粒的着火过程. 研究表明, 当镁颗粒表面反应加剧之后,颗粒相温度急剧上升, 迅速达到着火, 而其周围气相的温升速率却远小于颗粒的温升速率; 在着火过程中气相温度只在颗粒表面附近升高比较明显, 整体温度升高不大. 分析了颗粒群内部参数和环境参数对镁颗粒群着火的影响. 随颗粒浓度的增加, 颗 粒群变得易于着火, 其着火时间变短, 但颗粒浓度增大到一定程度后, 继续增大该值将对颗粒群的着火起消极作用. 环境压力对颗粒群着火的影响比较小,在1-5 atm范围内颗粒群的着火性能基本不变. 气相中氧气浓度对颗粒群的着火性能影响也不显著, 但当氧气浓度过小时, 对着火过程的影响将大大增强.颗粒粒径、气相/颗粒相初温、辐射源温度对颗粒 群着火的影响巨大,小粒径、高温度促使颗粒群快速着火.数值模拟与文献中试验 结果的变化趋势相一致.  相似文献   

7.
黄敏松  雷恒池 《物理学报》2018,67(24):249202-249202
作为云微物理过程测量的重要利器,机载云降水粒子成像仪在云降水物理与人工影响天气研究中具有重要的作用.从采样结果来看,机载云降水粒子成像仪所测粒子图像中含有大量的粒子图像仅是粒子的一部分而已,即部分状粒子.因其数量较多,对该类粒子所选处理方法不同,会引起测量结果的很大差异.本文介绍并分析了现有部分状粒子处理方法的优劣,通过对部分状粒子的再定义与粒子形状分类,提出了一个融合粒子形状识别技术、"粒径重构"和"中心在内"方法的新的部分状粒子处理方法;利用实测数据,对所提方法与现有方法进行了云微物理参量处理结果的对比,发现本文所提方法与"粒径重构"方法处理结果比较一致,能较好地克服"整体在内"与"中心在内"两种方法存在的缺陷;同时,在针柱状粒子占比较多情形下,本文所提方法要比"粒径重构"方法处理后的结果相对合理.因此本文所提方法对仪器所测粒子数据处理具有更好的适应性.  相似文献   

8.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

9.
A hybrid two-phase numerical methodology is used to investigate the flow-field subsequent to the detonation of a spherical charge of TNT with an ambient distribution of a dilute cloud of aluminum particles. The interaction of the particle cloud with the contact surface results in Rayleigh–Taylor instability, which grows in time and gives rise to a mixing layer where the detonation products mix with the air and afterburn. At early times, the ambient particles get engulfed into the detonation products and ignite. Subsequently, they catch up with the Rayleigh–Taylor structures, and the vortex rings around the hydrodynamic structures cause transverse dispersion that results in the clustering of particles. Then, the particles leave the mixing layer and quench, yet preserve their hydrodynamic foot print. Preferential heating and combustion of particles occurs due to clustering. A higher initial mass loading in the ambient cloud results in larger clusters due to stronger/larger vortex rings around the hydrodynamic structures. A larger particle size results in the formation of fewer and degenerate clusters when the initial width of the cloud is larger. A theoretical model is used to predict the bubble amplitudes, and are in good accordance with the simulation results. Overall, this study has provided some useful insights on the explosive dispersal of dilute aluminum particle clouds and the gas dynamics of the flow field in the mixing layer.  相似文献   

10.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

11.
饶瑞中 《光学学报》2013,33(1):101003-16
根据球形粒子的Mie散射理论和平行平面大气中的辐射传输理论分析了作用于水云粒子的太阳辐射压力。结果表明,一般情况下当云滴半径不大于10μm时,太阳辐射压力可达云滴重力的百分之几;云滴半径在0.3μm附近时,太阳辐射压力达到极大值,约为云滴重力的百分之几十。因此在云物理研究中应考虑作用于云粒子的太阳辐射压力。  相似文献   

12.
Computations have been performed for homogeneous and radially inhomogeneous spheres plus agglomerated structures composed of spherical primary units. The ranges of refractive index and particle size considered are typical of soot in flames. The effects of uncertainty in the refractive index and neglect of its radial distribution on inferring spherical particle sizes and concentrations from in situ light-scattering measurements are delineated. A framework is established for computing various scattering characteristics of agglomerated particles in terms of the scattering functions for spherical particles. The results achieved for agglomerates indicate that mean values of the particle concentration, number of units in an agglomerate and overall agglomerate size may be inferred from light-scattering data.  相似文献   

13.
In separation processes, the knowledge of particle size and density arc often not enough to describe the settling behaviour in a concentrated suspension. Therefore, a direct method for the characterization of the settling behavior of submicron particles in concentrated suspensions is introduced in a centrifugal field by a manometric sedimentation analysis. By means of this cumulative method in a homogeneous suspension, the analyses of both the interfacial settling rate and the settling rate of the particles within the concentrated suspension are possible. This permits a differential examination of settling processes in a broad concentration range. First, the influence of the solid concentration on the settling rate at the interface and within a monodisperse suspension with a range from 0.01 to 30 vol.% is represented. The relationship between the increase in settling rate through particles settling in a cluster and a concentration decrease in the suspension is also represented. Consideration of the possibilities of the analysis of polydisperse suspensions demonstrates the field of applications for this method.  相似文献   

14.
The force-coupling method, previously developed for spherical particles suspended in a liquid flow, is extended to ellipsoidal particles. In the limit of Stokes flow, there is an exact correspondence with known analytical results for isolated particles. More generally, the method is shown to provide good approximate results for the particle motion and the flow field both in viscous Stokes flow and at finite Reynolds number. This is demonstrated through comparison between fully resolved direct numerical simulations and results from the numerical implementation of the force-coupling method with a spectral/hp element scheme. The motion of settling ellipsoidal particles and neutrally buoyant particles in a Poiseuille flow are discussed.  相似文献   

15.
阐述基于Mie散射理论和激光技术而研制的云粒子探测仪的相关问题。利用m量级的小孔光阑模拟感应区域的散射光,并对系统的探测敏感区域面积进行测定;通过使用不同直径的标准粒子对系统进行标定,得到可靠的响应曲线,用于定量测量云粒子尺度谱及粒子数密度。在进行了一系列实验室内的实验之后,将仪器装载在飞机上进行穿云飞行测量实验,表明了该仪器在飞行过程中工作正常、稳定,并且能够即时地显示采样区内云粒子尺度谱分布和数浓度;通过分析探测得到的数据,并与云粒子谱分布进行比较,确认了探测数据有效可靠,反映了该仪器具有良好的测云能力。  相似文献   

16.
阐述基于Mie散射理论和激光技术而研制的云粒子探测仪的相关问题。利用m量级的小孔光阑模拟感应区域的散射光,并对系统的探测敏感区域面积进行测定;通过使用不同直径的标准粒子对系统进行标定,得到可靠的响应曲线,用于定量测量云粒子尺度谱及粒子数密度。在进行了一系列实验室内的实验之后,将仪器装载在飞机上进行穿云飞行测量实验,表明了该仪器在飞行过程中工作正常、稳定,并且能够即时地显示采样区内云粒子尺度谱分布和数浓度;通过分析探测得到的数据,并与云粒子谱分布进行比较,确认了探测数据有效可靠,反映了该仪器具有良好的测云能力。  相似文献   

17.
A detailed experimental characterization of the flow dynamics of a closely sized sample of cylindrical particles is reported here. Issues relevant to the design of reacting and nonreacting fluid‐solid contacting devices, e.g., pressure drop behavior, fluidization behavior and settling behavior, both in Stokes law as well as the intermediate region, were investigated. The common approach of extending correlations meant for predicting the fluid dynamic parameters of spherical particles to nonspherical particles, with the help of the sphericity shape factor, such that particle diameter is the product of the equivalent volume diameter and the sphericity of the nonspherical particle, was examined here. Notwithstanding the simplicity of this approach, caution must be exercised as far as fluid dynamic parameters thus obtained are concerned. Significant error was observed here in all cases. However, improved predictions were obtained using available correlations whose parameters were optimized using a database of nonspherical particles.  相似文献   

18.
The radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and a cloud of particles is investigated by using the combined finite-volume and discrete-ordinates method, named modified discrete-ordinates method (MDOM), which integrates the radiative transfer equation (RTE) over a control volume and a control angle simultaneously like in the finite-volume method (FVM) and treats the angular derivative terms due to spherical geometry as the conventional discrete-ordinates method (DOM). The radiative properties involving non-gray gas and particle behavior are modeled by using the extended weighted sum of gray gases model (WSGGM) with particles. Mathematical formulation and final discretization equations for the RTE are introduced by considering the behavior of a two-phase mixture of non-gray gas and particles in a spherically symmetric concentric enclosure. The present approach is validated by comparing with the results of previous works including gray and non-gray radiative heat transfer. Finally, a detailed investigation of the radiative heat transfer with non-gray gases and/or a two-phase mixture is conducted to examine the dependence of the radiative heat transfer upon temperature ratio between inner and outer spherical enclosure, particle concentration, and particle temperature.  相似文献   

19.
A coherent scattering of electromagnetic waves by clusters of inertial Rayleigh particles in atmospheric turbulence is considered. A preliminary estimate based on the Maxwell-Garnett theory and the Rayleigh approximation for single clusters demonstrates an importance of the coherent scattering contribution. It is confirmed by a general solution in a combination with theoretical estimates for the two-point probability density function for low-inertia spherical particles in isotropic turbulence. An approximate analytical expression for the coefficient characterizing effect of coherent scattering by the particle clusters is derived. The calculations for small Stokes numbers typical of water droplets in cumulus clouds yield an estimate of the coherent scattering effect on the microwave radar reflection. The model suggested allows solving the inverse problem to determine the pair correlation function for cloud particles. It is expected to be important for the investigations on particle–turbulence interaction in the atmosphere. The theoretical model developed is true not only in the limit of low-inertia particles and can be potentially used at arbitrary Stokes numbers in other applications.  相似文献   

20.
Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号