共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet. 相似文献
2.
Velocity and passive scalar (temperature) measurements have been made in the near field of a round jet with and without obstructing grids placed at the jet exit. The Reynolds number Re D (based on the exit centreline velocity and nozzle diameter) is 4.9 × 104 and the flow is incompressible, while the temperature rise does not affect the velocity behaviour. The streamwise development and radial spreading of the passive scalar are attenuated, relative to the unobstructed jet. Close to the jet outlet, the spatial similarity of the moments (up to the third-order) of velocity fluctuations is improved, when the jet is perturbed. An explanation, based on the reduced effect of the large coherent structures in the developing region, is provided. 相似文献
3.
The results of measurements of all three components of the mean velocity vector, the Reynolds normal and primary shear stresses and the mean static pressure in a turbulent free jet, issuing from a sharp-edged cruciform orifice, are presented in this paper. The measurements were made with an x-array hot-wire probe and a pitot-static tube in the near flow field of the jet. The Reynolds number, based upon the equivalent diameter of the orifice, was 1.70 × 105. In addition to the quantities measured directly, the mean streamwise centreline velocity decay, the jet half-velocity widths, the jet spreading rate, the mean streamwise vorticity, the mass entrainment rate, the integral momentum flux and the one-dimensional energy spectra have been derived from the measured data. The results show that the mean streamwise centreline velocity decay rate of the cruciform jet is higher than that of a round jet issuing from an orifice with the same exit area as that of the cruciform orifice. The mean streamwise velocity field changed shape continuously from a cruciform close to the orifice exit plane to circular at 12 and half equivalent diameters downstream. The mean streamwise vorticity field, up to about three equivalent diameters downstream of the orifice exit plane, consists of four pairs of counter-rotating cells, which are aligned with the four edges in the centre of the cruciform orifice. 相似文献
4.
The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be used to suppress acoustic streaming in closed-loop thermoacoustic devices. An experimental setup is used to measure the time-averaged pressure drop as well as the acoustic power dissipation across two different jet pump geometries in a pure oscillatory flow. The results are compared against published numerical results where flow separation was found to have a negative effect on the jet pump performance in a laminar flow. Using hot-wire anemometry the onset of flow separation is determined experimentally and the applicability of a critical Reynolds number for oscillatory pipe flows is confirmed for jet pump applications. It is found that turbulence can lead to a reduction of flow separation and hence, to an improvement in jet pump performance compared to laminar oscillatory flows. 相似文献
5.
为了能够更好地了解不定源喷嘴(indeterminate origin nozzle)射流中的物理过程,本文应用平面激光诱导荧光技术对一个大尺度的水射流进行了实验研究。流场显示的实验结果表明不定源喷嘴在射流的剪切层引入了蘑菇形反向旋转的涡对。这些涡的矢量方向与射流方向相同或相反,被称为流向涡(streamwise vortex)。由于射流中存在开尔文一亥姆霍兹不稳定,每当一个横向涡(spanwisevortex,即涡的矢量方向与射流方向垂直)从喷嘴脱流时会产生瞬时的低压,该瞬时低压促使向内发展的流向涡对在喷嘴的凹槽处生成。这些涡对在向下游流动的过程中会重组并在喷嘴的尖峰面生成向外发展的涡对。这些流向涡极大地影响了射流的发展。流向涡与横向涡的相互作用促使射流更早地发展成为湍流。由于流向涡同时也在射流中引入了径向的剪切流动,因此导致了更多的湍流生成从而增强了射流与周围流体的混合。 相似文献
6.
为了能够更好地了解不定源喷嘴(indeterminate origin nozzle)射流中的物理过程,本文应用平面激光诱导荧光技术对一个大尺度的水射流进行了实验研究。流场显示的实验结果表明不定源喷嘴在射流的剪切层引入了蘑菇形反向旋转的涡对。这些涡的矢量方向与射流方向相同或相反,被称为流向涡(streamwise vortex)。由于射流中存在开尔文-亥姆霍兹不稳定,每当一个横向涡(spanwise vortex,即涡的矢量方向与射流方向垂直)从喷嘴脱流时会产生瞬时的低压,该瞬时低压促使向内发展的流向涡对在喷嘴的凹槽处生成。这些涡对在向下游流动的过程中会重组并在喷嘴的尖峰面生成向外发展的涡对。这些流向涡极大地影响了射流的发展。流向涡与横向涡的相互作用促使射流更早地发展成为湍流。由于流向涡同时也在射流中引入了径向的剪切流动,因此导致了更多的湍流生成从而增强了射流与周围流体的混合。 相似文献
7.
The effect of the nozzle edge shape on the acoustic sensitivity of jets, that is, on the dependence of the jet parameters on the amplitude and frequency of the acoustic oscillations produced by an external source, is experimentally studied. The investigation was performed for nozzle edge configurations, the variation of which did not result in a change in the jet characteristics without external acoustic excitation. This means that the change in the edge shape alone had no influence on the flow pattern at the nozzle exit or the boundary layer flow regime on the nozzle walls. Measurements of the dependence of the mean velocity and the velocity fluctuation intensity on the jet axis on the distance from the nozzle exit showed that a change in the nozzle edge shape can lead to a change in the acoustic sensitivity of the jet when the jet is exposed to external acoustic action. 相似文献
8.
Y. S. Tsai J. C. R. Hunt F. T. M. Nieuwstadt J. Westerweel B. P. N. Gunasekaran 《Flow, Turbulence and Combustion》2007,79(2):155-174
The initial stage of the development of a wall jet under the influence of strong external turbulence has been studied in a
novel shear-flow mixing-box experiment. A fully developed channel flow of depth h (40 mm) enters along the top wall of a cuboidal box of height 11 h in which a combination of oscillatory and turbulent velocity fluctuations are generated by a vertical oscillating grid at
the midplane 5 h below the wall. When the ratio of the rms grid-generated velocity fluctuations, , to the local mean velocity inside the wall jet layer, u, is greater than about 0.1, significant changes are observed in the mean shear profile and in the eddy structure of the wall
jet. The wall jet thickness increases by approximately 25% but the maximum velocity decreases by less than 10% compared to
the case without the external turbulence. Fluctuations of the streamwise velocity component increase as expected in the outer
part of the wall jet, but the most significant result is the increase by 70% of the fluctuations in the boundary layer close
to the wall. CFD simulations using the k-ɛ RNG of the FLUENT CFD Code do not properly model the effect of the large scale external turbulence in this experiment. However,
an artificial method, which introduces a series of small inlet/outlet jets to represent external turbulence, approximately
simulates the overall effects of the oscillating grid on the wall jet, but does not simulate the amplification of the near
wall turbulence.
F. T. M. Nieuwstadt: Rest in peace (1946–2005). 相似文献
9.
10.
11.
Jet formation was studied in the region of two-dimensional and three-dimensional waves in a heated liquid film flowing down a vertical surface. Jet-to-jet spacings were measured versus the film Reynolds number and the heat flow density. Three-dimensional waves on the film surface were formed naturally or by artificial perturbations. In addition to the thermocapillary mechanism of jet formation, a thermocapillary–wavy mechanism was found to exist. 相似文献
12.
13.
B. L. Smorodin 《Fluid Dynamics》2001,36(4):548-555
The effect of an alternating arbitrary-frequency electric field on the stability of convective flow of a dielectric liquid occupying a vertical layer is investigated within the framework of the electrohydrodynamic approximation when charge formation is associated only with the nonuniform liquid polarization. The stability thresholds are determined in the linear approximation using Floquet theory. The competition between the dielectrophoretic and thermogravitational instability mechanisms is explored. It is shown that in the case of a harmonically modulated field either quasiperiodic perturbations or perturbations synchronous with the external action may be the most dangerous. One further critical perturbation mode corresponding to the subharmonic response to variation of the external field develops for triangular modulation. In the limiting case of low-frequency modulation the asymptotic behavior of the critical parameters is investigated using the Wentzel-Kramers-Brillouin method. 相似文献
14.
15.
K. Osawa Y. Naka N. Fukushima M. Shimura M. Tanahashi T. Miyauchi 《Flow, Turbulence and Combustion》2016,97(4):973-986
Direct numerical simulations of Taylor-Couette flow from Re= 8000 to 25000 have been conducted to investigate changes of turbulence statistics in the transition of the Reynolds number dependency of the mean torque near Re= 10000. The velocity fluctuations are decomposed into the contributions of the Taylor vortex and remaining turbulent fluctuations. Significant Reynolds number dependencies of these components are observed in the radial profiles of the Reynolds stress and the transmission of the mean torque. The contributions of Taylor vortex and turbulent components in the net amount of mean torque are evaluated. The Taylor vortex component is overtaken by the turbulent counterpart around Re= 15000 when they are defined as the azimuthally averaged component and the remnants. The results show that the torque transition can be explained by the competition between the contributions of azimuthally averaged Taylor vortex and the remaining turbulent components. 相似文献
16.
H.-J. Kaltenbach 《Theoretical and Computational Fluid Dynamics》2003,16(3):187-210
A three-dimensional separated flow behind a swept, backward-facing step is investigated by means of DNS for Re
H
= C
∞
H/ν = 3000 with the purpose to identify changes in the statistical turbulence structure due to a variation of the sweep angle
α from 0° up to 60°. With increasing sweep angle, the near-wall turbulence structure inside the separation bubble and downstream
of reattachment changes due to the presence of an edge-parallel mean flow component W. Turbulence production due to the spanwise shear ∂W/∂y at the wall becomes significant and competes with the processes caused by impingement of the separated shear-layer. Changes
due to a sweep angle variation can be interpreted in terms of two competing velocity scales which control the global budget
of turbulent kinetic energy: the step-normal component U
∞ = C
∞cosα throughout the separated flow region and the velocity difference C
∞ across the entire shear-layer downstream of reattachment. As a consequence, the significance of history effects for the development
into a two-dimensional boundary layer decreases with increasing sweep angle. For α ≥50°, near-wall streaks tend to form inside
the separated flow region.
Received 7 November 2000 and accepted 9 July 2002 Published online 3 December 2002
RID="*"
ID="*" Part of this work was funded by the Deutsche Forschungsgemeinschaft within Sfb 557. Computer time was provided by the
Konrad-Zuse Zentrum (ZIB), Berlin.
Communicated by R.D. Moser 相似文献
17.
We present a new version of the two-equation turbulence model, which makes it possible to calculate continuously the entire flow range from laminar to turbulent, including transition, in the case of a time-periodic, high-turbulence-level freestream. The influence of the parameters characterizing the harmonic fluctuations of the external velocity and the freestream turbulence intensity and scale on the parameters of the flat-plate flow are analyzed. A comparison of the numerical solutions with the experimental and theoretical data indicates the possibility of describing the wall flow properties on the basis of a quasi-stationary turbulence model, as the Reynolds number varies from low to high values. 相似文献
18.
M. Sommerfeld A. I. Kartushinskii H. Kohnen Yu. A. Rudi M. T. Khusainov I. N. Shcheglov 《Fluid Dynamics》2000,35(6):872-882
The results of an experimental investigation of the effect of particles on decaying grid-generated turbulence in a downward vertical turbulent gas-particle flow are presented. The dispersed particles were glass spheres with a mean size of 700 m. Titanium dioxide particles with a mean size of 2 m were used as the particle-markers modeling the carrier-medium flow. The turbulence was generated by grids with square cells of two sizes (4.8 and 10 mm) and an impenetrability parameter equal to 0.49 at a mean flow velocity equal to 9.5 m/s. The grid Reynolds numbers were 3000 and 6300. The damping of turbulence by the particles, manifested in an increase in the turbulence decay rate (viscous dissipation) and a decrease in the turbulence energy in the power-consuming spectral band, was detected. 相似文献
19.
Konstantin A. Kemenov Haifeng Wang Stephen B. Pope 《Flow, Turbulence and Combustion》2012,88(4):529-561
The explicit dependence of LES fields on the turbulence resolution scale Δ implies that LES statistics usually vary with Δ and exhibit different convergence behaviors for different types of statistics, flow variables and subgrid LES models. The present work compares the performance of two popular subgrid models—the dynamic Smagorinsky model and the Vreman model—based on the convergence of their LES statistics with respect to Δ for a piloted methane-air (Sandia D) flame. The Δ-dependence of the LES statistics is studied based on five grids with progressively increased resolution ranging from 3 × 105 to about 10.4 × 106 cells. The simulation results show that the resolved velocity statistics converge for the finest grids with some weak Δ-dependence observed in the variance fields. The mixture fraction statistics are found to be more sensitive to the turbulence resolution scale upstream in the flame signifying the importance of the estimation of the Δ-invariant LES statistics at the DNS limit. For the considered flame the Vreman subgrid model exhibits good performance with the statistics being very close to those given by the dynamic Smagorinsky model, and being rather insensitive to a choice of the model constant. 相似文献
20.
A two-dimensional unsteady plane jet is computed using four turbulence models. The strain field generated by the ‘synthetic’ (reciprocating) jet under consideration contains regions of strong normal and shear straining, while vortex pairs formed by the issuing jet are highly rotational. Turbulence closures at the eddy-viscosity level (standard k???ε and two-timescale models) and two stress-transport closures (the ‘basic’ model and a two-component-limit scheme) are examined against experimental data. It is found that the extreme nature of the strain environment presents a severe challenge to the models tested; in particular, fundamental weaknesses in the constitutive equation of linear eddy viscosity models are highlighted. An additional term in the dissipation rate equation of the two-timescale model is found to hinder the formation of clearly defined starting vortex pairs which play a critical role in determining the near-field pattern of synthetic jet development. The stress-transport models are able to reproduce measured turbulence quantities with a greater degree of accuracy, and the two-component-limit formulation shows an improvement over the basic model. 相似文献