首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd–Ni NP including core-related solid-like regions melts at once.  相似文献   

2.
Based on the ideal solution approximation, the model for size-dependent melting temperature of pure metal nanoparticles is extended to binary alloy systems. The developed model, free of any adjustable parameter, demonstrates that the melting temperature is related to the size and composition of alloy nanoparticles. The melting temperature of CuNi, PbBi and SnIn binary alloy nanocrystals is found to be consistent with the experiments and molecular dynamics simulations. The research reveals that alloy nanocry...  相似文献   

3.
The molecular dynamics simulation method has been used to study the size- and shape-dependent lattice parameter of unsupported small Pt nanoparticles, where the shapes concerned are sphere, cube, and cuboctahedron. It is shown that the lattice parameters decrease with decreasing the particle size in specific shape. The lattice variations of cubic shapes are higher than those of cuboctahedral shapes, and those of cuboctahedral shapes are higher than spherical ones. Furthermore, the shape effect on lattice parameter increases with decreasing the particle size. By linear fitting the simulated results, it is found that the particle shape can contribute to 7% of the total lattice parameter variation for cubic shape and to 5% for cuboctahedral shape. The present simulation results are qualitatively consistent with experimental values and the predictions by Continuous-Medium (CM) model.  相似文献   

4.
The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function(RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al–Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al–Ti atoms for the low cooling rate.  相似文献   

5.
A thermodynamic model was developed to clarify the dependence of melting temperature on hydrostatic pressure in the nanoscopic scale. It is based on the classic Clausius-Clapeyron relation and the size dependence of the melting entropy. The melting of nanoparticles in matrix with coherent and incoherent boundaries was also under consideration. It was shown that external hydrostatic pressure leads to the appearance of extrema of the melting temperature that was considered as a function of the characteristic size of nanoparticles.  相似文献   

6.
Nanostructured powders have shown great promise for a variety of applications including chemical gas sensors, high surface area supports for catalysis, tribology, chemical mechanical polishing, and optoelectronics. In this report, highly dispersed Pd nanoparticles with a narrow size distribution, and mean diameter of 2±0.2 nm, were deposited at room temperature onto amorphous carbon and oxide supports (TiO2, Al2O3) by pulsed-laser ablation of a Pd sputtering target. Depositions were performed in Ar at a back-fill pressure of 3 mTorr after reaching a base pressure of 10-7 Torr. Populations of uniformly dispersed particles with an interparticle spacing of 3 to 10 nm were observed by high-resolution transmission electron microscopy with little evidence of nanoparticle aggregation. The chemical compositions of individual nanoparticles were confirmed by high spatial resolution energy-dispersive X-ray spectroscopy.  相似文献   

7.
Size analysis and magnetic structure of nickel nanoparticles   总被引:1,自引:0,他引:1  
The size distribution of an assembly of fcc nickel nanoparticles is studied by measuring the temperature dependent magnetization curves fitted by a uniform model and a core-shell model, both based on the Langevin function for superparamagnetism with a log-normal particle volume distribution. The uniform model fits lead to a spontaneous magnetization Ms much smaller than the Ms for bulk nickel and to particle sizes larger than the ones evaluated by transmission electron microscopy; the core-shell model fits can result in a correct size distribution but the Ms in the core becomes significantly greater than the Ms for bulk nickel. It is concluded that there is a core-shell magnetic structure in nickel particles. Although the enhanced Ms in the core may be related to the narrowing of the energy bands of 3d electrons in small fcc nickel particles, the modeling values of Ms are over large compared with previous calculations on nickel clusters of different structures, which implies possible existence of an exchange interaction between the core and the shell, which is not considered in the simple core-shell model.  相似文献   

8.
The effect of the oxygen plasma treatment on the electronic states of multi-wall carbon nanotubes (MWCNTs) is analyzed by X-ray photoemission measurements (XPS) and UPS, both using synchrotron radiation. It is found that the plasma treatment effectively grafts oxygen at the CNT-surface. Thereafter, the interaction between evaporated Pd and pristine or oxygen plasma-treated MWCNTs is investigated. Pd is found to nucleate at defective sites, whether initially present or introduced by oxygen plasma treatment. The plasma treatment induced a uniform dispersion of Pd clusters at the CNT-surface. The absence of additional features in the Pd 3d and C 1s core levels spectra testifies that no Pd-C bond is formed. The shift of the Pd 3d core level towards high-binding energy for the smallest clusters is attributed to the Coulomb energy of the charged final state.  相似文献   

9.
T. Schalow  H.-J. Freund 《Surface science》2006,600(12):2528-2542
We have quantitatively studied the interaction between oxygen and an Fe3O4-supported Pd model catalyst by molecular beam (MB) methods, time resolved IR reflection absorption spectroscopy (TR-IRAS) and photoelectron spectroscopy (PES) using synchrotron radiation. The well-shaped Pd particles were prepared in situ by metal evaporation and growth under ultrahigh vacuum (UHV) conditions on a well-ordered Fe3O4 film on Pt(1 1 1).It is found that for oxidation temperatures up to 450 K oxygen predominantly chemisorbs on metallic Pd whereas at 500 K and above (∼10−6 mbar effective oxygen pressure) large amounts of Pd oxide are formed. These Pd oxide species preferentially form a thin layer at the particle/support interface, stabilized by the iron-oxide support. Their formation and reduction is fully reversible. Upon decomposition, oxygen is released which migrates back onto the metallic part of the Pd surface. In consequence, the Pd interface oxide layer acts as an oxygen reservoir, the capacity of which by far exceeds the amount of chemisorbed oxygen on the metallic surface.Additionally, Pd surface oxides can also be formed at temperatures above 500 K. The extent of surface oxide formation critically depends on the oxidation temperature. This effect is addressed to different onset temperatures for oxidation of the particle facets and sites. It is shown that the presence of Pd surface oxides sensitively modifies the adsorption and reaction properties of the model catalyst, i.e. by lowering the CO adsorption energy and CO oxidation probability. Still, a complete reduction of the Pd surface oxides can be obtained by extended CO exposure, fully reestablishing the metallic Pd surface.  相似文献   

10.
This research investigates the synthesis and size-dependent melting point depression of complex metallic alloy (CMA) nanoparticles. Al12Mg17 which belongs to this new category of intermetallic materials was initially produced as pre-alloyed ingot, then homogenized to achieve single phase compound and crushed into small size powder and finally, mechanically milled in a planetary ball mill to synthesize nanoparticles. Phase and microstructural characterizations of the as-crushed and milled powders were performed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Effects of the mechanical milling on thermal behavior of the Al12Mg17 nanoparticles in comparison with as-cast Al12Mg17 ingot has been investigated by differential scanning calorimetry (DSC) measurement. It was found that an average particle size of 24 nm with crystallite size of 16 nm was achieved after 20 h of ball milling process. The size- dependent melting point depression of the Al12Mg17 nanoparticles has been experimentally observed and also comparison of the obtained results with theoretical models was carried out.  相似文献   

11.
Hou JG  Wang B  Yang J  Wang K  Lu W  Li Z  Wang H  Chen DM  Zhu Q 《Physical review letters》2003,90(24):246803
Size-selectable ligand-passivated crystalline and amorphous Pd nanoparticles (<4 nm) are synthesized by a novel two-phase process and verified by high-resolution transmission electron microscopy. Scanning tunneling spectroscopy preformed at 5 K on these two types of nanoparticles exhibits clear Coulomb blockade and Coulomb staircases. Size dependent multipeak spectral features in the differential conductance curve are observed for the crystalline Pd particles but not for the amorphous particles. Theoretical analysis shows that these spectral features are related to the quantized electronic states in the crystalline Pd particle. The suppression of the quantum confinement effect in the amorphous particle arises from the reduction of the degeneracy of the eigenstates and the level broadening due to the reduced lifetime of the electronic states.  相似文献   

12.
A model has been developed to account for the dependence of melting temperature of nanoparticles on their size, shape and lattice type. This model is consistent with reported experimental data and shows better consistency than the liquid drop and bond energy model. A general equation is proposed which correlates with the bond energy model formula and has high potential for application in research and development. The model also leads to an equation showing the limiting size for nanoparticles.  相似文献   

13.
The specific features of the EPR spectra of Tm3+ impurity ions in synthetic forsterite have been studied by continuous-wave EPR spectroscopy in the frequency range of 270–310 GHz at a temperature of 4.2 K in weak magnetic fields. Narrow resonance signals unrelated to the modulation of the resonance conditions of EPR under the modulation of the external magnetic field have been discovered in measurements at frequencies corresponding to the zero field splitting between the ground and first excited singlet electron states of Tm3+ ions in zero magnetic field. The origin of these narrow lines is discussed.  相似文献   

14.
Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615~1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.  相似文献   

15.
In spite of the technological importance of laser modification and processing of nanoparticles, the interaction of laser energy with nanoparticles is not well understood. In this work, integrated molecular dynamics (MD) and two-temperature (TTM) computational models have been developed to study ultrafast laser interaction with free Au nanoparticles with sizes 2.44–6.14 nm. At low intensity, when surface premelting and solid–liquid phase transition dominate, a nonhomogeneous surface premelting mechanism was identified. The appearance of a contiguous surface liquid layer (complete surface premelting) is size dependent and is not related to surface premelting history. The effects of temporary superheating and stable supercooling of nanoparticles were found and examined.  相似文献   

16.
D.K. Sar  K.K. Nanda 《Physics letters. A》2008,372(25):4627-4629
We report on the size-dependent melting of prism-shaped nanoparticles based on thermodynamic model and applied to understand the melting of prism-shaped indium nanoparticles. It is shown here that the bulk melting temperature cannot be extrapolated from the nanoscale and the extrapolated value will always be lower than the bulk melting temperature as has been observed experimentally.  相似文献   

17.
Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl4] solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV–vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl4] anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV–vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.  相似文献   

18.
The correlation between the melting and crystallization temperatures of metal nanoparticles is investigated by means of the thermodynamic approach. Size-dependent variations in the melting temperature of aluminum, tin, and copper nanoparticles are calculated with allowance for the corresponding size dependences of surface tensions in solid and liquid phases and interfacial tension. Size-dependent variations in crystallization temperature are determined under the assumption that a certain effective surface layer (skin-layer) arises before melting.  相似文献   

19.
Size and shape dependent lattice parameters of metallic nanoparticles   总被引:3,自引:0,他引:3  
A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures.  相似文献   

20.
The size dependence of the melting temperature of nanocrystals has been investigated within the thermodynamic approach. A formula is obtained, which, in contrast to the classical Thomson formula, takes into account the metastable character of equilibrium between the crystal core and melt shell. Comparative investigation of the size dependence of the melting temperature, disregarding and taking into account the size dependences of the surface tension of the solid and liquid phases and the interface tension, has been performed by the example of aluminum, tin, and copper nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号