首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient, axisymmetric squeezing of viscoplastic materials under creeping flow conditions is examined. The flow of the material even outside the disks is followed. Both cases of the disks moving with constant velocity or under constant force are studied. This time-dependent simulation of squeeze flow is performed for such materials in order to determine very accurately the evolution of the force or the velocity, respectively, and the distinct differences between these two experiments, the highly deforming shape and position of all the interfaces, the effect of possible slip on the disk surface, especially when the slip coefficient is not constant, and the effect of gravity. All these are impossible under the quasi-steady state condition used up to now. The exponential constitutive model, suggested by Papanastasiou, is employed. The governing equations are solved numerically by coupling the mixed finite element method with a quasi-elliptic mesh generation scheme in order to follow the large deformations of the free surface of the fluid. As the Bingham number increases, large departures from the corresponding Newtonian solution are found. When the disks are moving with constant velocity, unyielded material arises only around the two centers of the disks verifying previous works in which quasi-steady state conditions were assumed. The size of the unyielded region increases with the Bingham number, but decreases as time passes and the two disks approach each other. Their size also decreases as the slip velocity or the slip length along the disk wall increase. The force that must be applied on the disks in order to maintain their constant velocity increases significantly with the Bingham number and time and provides a first method to calculate the yield stress. On the other hand, when a constant force is applied on the disks, they slow down until they finally stop, because all the material between them becomes unyielded. The final location of the disk and the time when it stops provide another, probably easier, method to deduce the yield stress of the fluid.  相似文献   

2.
In this paper, an unsteady flow of a viscoplastic fluid for simple shear flow geometry is solved numerically using two regularizing functions to overcome the discontinuity for zero shear rate of the Bingham constitutive law. The adopted models are the well-known Papanastasiou relation and one based on the error function. The numerical results are compared with the analytical solution of the same problem obtained by Sekimoto (J Non-Newton Fluid Mech 39:107–113, 1991). The analysis of the results emphasizes that the errors are much smaller in the yielded than in the unyielded region. The models approximate closer the ideal Bingham model as the regularization parameters increase. The differences between the models tend to vanish as the regularization parameters are at least greater than 105.  相似文献   

3.
Numerical simulations are undertaken for unsteady flows of an ideal Bingham fluid in a circular Couette viscometer. The main difficulties in such simulations are caused by the non-differentiability of the constitutive equation and the need to determine the position and shape of the yield surface separating the yielded zones from the unyielded ones. In this work, these difficulties are overcome by using a numerical method based on variational inequalities, i.e. the augmented Lagrangian/Uzawa method. The start-up and cessation of circular Couette flows of a Bingham fluid are solved numerically assuming that only one of the cylinders is rotating. An improved theoretical upper bound for the stopping time in the case of cessation is derived. The numerical estimates for the stopping time compare well with the theoretical bounds. Moreover, with the adopted method the evolution of the velocity profiles and the locations of yielded/unyielded surfaces are accurately calculated. In flow cessation, we observe an interesting effect, namely the appearance of a small unyielded region adjoined to the outer cylinder shortly before cessation.  相似文献   

4.
This numerical study focuses on regularised Bingham-type and viscoelastoplastic fluids, performing simulations for 4:1:4 contraction?Cexpansion flow with a hybrid finite element?Cfinite volume subcell scheme. The work explores the viscoplastic regime, via the Bingham?CPapanastasiou model, and extends this into the viscoelastoplastic regime through the Papanastasiou?COldroyd model. Our findings reveal the significant impact that elevation has in yield stress parameters, and in sharpening of the stress singularity from that of the Oldroyd/Newtonian models to the ideal Bingham form. Such aspects are covered in field response via vortex behaviour, pressure-drops, stress field structures and yielded?Cunyielded zones. With rising yield stress parameters, vortex trends reflect suppression in both upstream and downstream vortices. Viscoelastoplasticity, with its additional elasticity properties, tends to disturb upstream?Cdownstream vortex symmetry balance, with knock-on effects according to solvent-fraction and level of elasticity. Yield fronts are traced with increasing yield stress influences, revealing locations where relatively unyielded material aggregates. Analysis of pressure drop data reveals significant increases in the viscoplastic Bingham?CPapanastasiou case, O (12%) above the equivalent Newtonian fluid, that are reduced to 8% total contribution increase in the viscoelastoplastic Papanastasiou?COldroyd case. This may be argued to be a consequence of strengthening in first normal stress effects.  相似文献   

5.
We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids through complex flow channels. In this study, the Bingham and Casson model fluids are covered as viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are employed in our LB simulations. The Bingham number is an essential physical parameter when considering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic models. When the value of the modified Bingham number agrees with that of the “normal” Bingham number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity profile is quite different between both the viscoplastic fluids due to the inherent nature of the models. The viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also an effective methodology for computing viscoplastic fluid flows through complex channels including circular obstacles.  相似文献   

6.
Numerical simulations have been undertaken for the creeping pressure-driven flow of a Bingham plastic past a cylinder kept between parallel plates. Different gap/cylinder diameter ratios have been studied ranging from 2:1 to 50:1. The Bingham constitutive equation is used with an appropriate modification proposed by Papanastasiou, which applies everywhere in the flow field in both the yielded and practically unyielded regions. The emphasis is on determining the extent and shape of yielded/unyielded regions along with the drag coefficient for a wide range of Bingham numbers. The present results extend previous simulations for creeping flow of a cylinder in an infinite medium and provide calculations of the drag coefficient around a cylinder in the case of wall effects.  相似文献   

7.
The augmented Lagrangian/Uzawa method has been used to study benchmark one-dimensional cessation flow problems of a Bingham fluid, such as the plane Couette flow, and the plane, round, and annular Poiseuille flows. The calculated stopping times agree well with available theoretical upper bounds for the whole range of Bingham numbers and with previous numerical results. The applied method allows for easy determination of the yielded and unyielded regions. The evolution of the rigid zones in these unsteady flows is presented. It is demonstrated that the appearance of an unyielded zone near the wall occurs for any non-zero Bingham number not only in the case of a round tube but also in the case of an annular tube of small radii ratio. The advantages of using the present method instead of regularizing the constitutive equation are also discussed.  相似文献   

8.
The steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is considered, assuming that different power-law slip equations apply at the two walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different flow regimes are observed as the pressure gradient is increased. Below a first critical pressure gradient G 1, the fluid moves unyielded with a uniform velocity, and thus, the two slip velocities are equal. In an intermediate regime between G 1 and a second critical pressure gradient G 2, the fluid yields in a zone near the weak-slip wall and flows with uniform velocity near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity are uniform only in the central unyielded core. It is demonstrated that the central unyielded region tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region rends towards the weak-slip wall and asymmetry is enhanced. The extension of the different flow regimes depends on the channel gap; in particular, the intermediate asymmetric flow regime dominates when the gap becomes smaller than a characteristic length which incorporates the wall slip coefficients and the fluid properties. The theoretical results compare well with available experimental data on soft glassy suspensions. These results open new routes in manipulating the flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk rheology of the material but also on the wall properties.  相似文献   

9.
Lorenzo Fusi 《Meccanica》2017,52(15):3577-3592
In this paper we investigate the non-isothermal flow of a Bingham fluid whose viscosity and yield stress depend on temperature and pressure. We consider two situations: in the first one we assume that the buoyancy effects are dominant and influence the development and evolution of the unyielded plug. In this case the governing equations are obtained via the Oberbeck–Boussinesq approximation which is derived using a perturbative approach. We show that within this approximation the heat generated by viscous friction can be safely neglected. In the second situation we assume that the frictional heating effects are dominant and influence the flow via the viscosity and yield stress that depend on temperature. For both situations we investigate the simple unidirectional flow between plates subjected to given thermal conditions. We derive the equations for the steady fully developed flow and we determine the exact position of the yield surfaces separating the yielded and the unyielded domain. We also show some plots to assess the effects due to the dependence of the rheological parameters on the temperature and pressure.  相似文献   

10.
Numerical simulations of viscoplastic fluid flows have provided a better understanding of fundamental properties of yield stress fluids in many applications relevant to natural and engineering sciences. In the first part of this paper, we review the classical numerical methods for the solution of the non-smooth viscoplastic mathematical models, highlight their advantages and drawbacks, and discuss more recent numerical methods that show promises for fast algorithms and accurate solutions. In the second part, we present and analyze a variety of applications and extensions involving viscoplastic flow simulations: yield slip at the wall, heat transfer, thixotropy, granular materials, and combining elasticity, with multiple phases and shallow flow approximations. We illustrate from a physical viewpoint how fascinating the corresponding rich phenomena pointed out by these simulations are.  相似文献   

11.
In this work, the creeping flow of a viscoplastic fluid through a planar channel with an expansion followed by a contraction is analyzed numerically. The solution of the conservation equations of mass and momentum is obtained via the finite volume method. In order to model the non-Newtonian behavior of the fluid, it was used the generalized Newtonian fluid constitutive equation. The viscosity function was the one proposed by Souza Mendes and Dutra [Souza Mendes, P.R., Dutra, E.S.S., 2004. Viscosity function for yield-stress liquids. Appl. Rheol. 14, 296–302]. The yielded and unyielded regions are obtained for several combinations of rheological parameters. The influence of these parameters on pressure drop through the cavity is also obtained and analyzed.  相似文献   

12.
Boundary layer (BL) solutions around a flat plate for viscoplastic fluids are re-examined, after the precursory study by Oldroyd of low inertia Bingham fluid mechanics. Due consideration is paid to the admissible stress fields far from the obstacle. Normalized Cauchy equations are introduced in the flowing regions. They initially contain inertia, pressure, and viscoplastic terms obtained by adding the yield value and a viscous stress excess in the flowing regions. New similarity solutions for the BL along a flat plate are derived, and the VPBL properties are given, in the limiting case of creeping flows with a dominant yield value. Improvements with respect to Oldroyd solution and relevant aspects are presented and discussed.  相似文献   

13.
We present results of a computational study of visco-plastically lubricated plane channel multi-layer flows, in which the yield stress fluid layers are unyielded at the interface. We demonstrate that symmetric 3-layer flows may be established for wide ranges of viscosity ratio (m), Bingham number (B) and interface position (yi), for Reynolds numbers Re  100. Here an inner Newtonian layer is sandwiched between 2 layers of Bingham fluid. Results are presented illustrating the variation of development length with the main dimensionless parameters and for different inlet sizes. We also show that these flows may be initiated by injecting either fluid into a steady flow of the other fluid. The flows are established quicker when the core fluid is injected into a channel already full of the outer fluid. In situations where the inner fluid flow rate is dominant we observed inertial symmetry breaking in the symmetric start-up flows as Re was increased. Asymmetry is also observed in studying temporal nonlinear stability of these flows, which appear stable up to moderate Re and significant amplitudes. In general the flows destabilize at lower Re and perturbation amplitudes than do the analogous core-annular pipe flows, but 1–1 comparison is hard. When the flow is stable the decay characteristics are very similar to those of the pipe flows. In the final part of the paper we explore more exotic flow effects. We show how flow control could be used to position layers asymmetrically within the flow, and how this effect might be varied transiently. We demonstrate that more complex layered flows can be stably achieved, e.g. a 7-layered flow is established. We also show how a varying inlet position can be used to “write” in the yield stress fluid: complex structures that are advected with the flow and encapsulated within the unyielded fluid.  相似文献   

14.
A concept of viscoplasticity advanced exactly one century ago by Bingham appears very fruitful because there are many natural and artificial materials that demonstrate viscoplastic behavior, i.e., they are able to pass from a solid to a liquid state under the influence of applied stress. However, although this transition was originally considered as a jump-like phenomenon occurring at a certain stress—the yield stress—numerous subsequent studies have shown that the real situation is more complicated. A long-term discussion about the possibility of flow at low stresses less than the yield stress came to today’s conclusion denying this possibility as being opposite to the existence of the maximal Newtonian viscosity in viscoelastic polymeric fluids. So, there is a contradiction between the central dogma of rheology which says that “everything flows” and the alleged impossibility for flow at a solid-like state of viscoplastic fluids. Then, the concept of the fragile destruction of an inner structure responsible for a solid-like state at the definite (yield) stress was replaced by an understanding of the yielding as a transition extending over some stress range and occurring in time. So, instead of the yield stress, yielding is characterized by the dependence of durability (or time-to-break) on the applied stress. In this review, experimental facts and the new understanding of yielding as a kinetic process are discussed. Besides, some other alternative methods for measuring the yield stress are considered.  相似文献   

15.
A viscoplastic, or yield-stress, liquid occupies the space between two infinite parallel plates. Initially the whole system is at rest. The lower plate is suddenly jerked into motion with given speed or shear stress, while the upper plate is kept fixed. The flow consists of two regions; (1) a lower sheared region bounded above by the yield surface, (2) an upper unyielded region bounded below by the yield surface. The yield surface propagates to the upper plate as time proceeds. We first consider the equivalent one plate problem of flow over a jerked plate, and find similarity solutions and small time asymptotic solutions for prescribed shear and speed cases respectively. These solutions are used as initial solutions for the two plate case. The motion of the yield surface and the time taken for the entire material to yield are investigated. The problems considered here are two dimensional representations of some control devices, for example the light duty clutch, which consists of two corotating, coaxial discs separated by a layer of electrorheological material. In this application it is useful to know the time taken for all the material to yield.  相似文献   

16.
Yield stress fluids (YSF) exhibit strongly non-linear rheological characteristics. As a consequence, they develop original flow features (as compared to simple fluids) under various boundary conditions. This paper reviews and analyzes the characteristics of a series of slow flows (just beyond yielding) under more or less complex conditions (simple shear flow, flow through a cavity, dip-coating, blade-coating, Rayleigh-Taylor instability, Saffman-Taylor instability) and highlights some of their common original characteristics: (i) a transition from a solid regime to a flowing regime which does not correspond to a true “liquid state,” the flow in this regime may rather be seen as a succession of solid states during very large deformation; (ii) a strong tendency to localization of the yielded regions in some small region of the material while the rest of the material undergoes some deformation in its solid state; (iii) the deformation of YSF interface with another fluid, in the form of fingers tending to penetrate the material via a local liquefaction process. Finally, these observations suggest that slow flows of YSF are a kind of extension of plastic flows for very large deformations and without irreversible changes of the structure. This suggests that the field of plasticity and the field of slow flows of YSF could benefit from each other.  相似文献   

17.
Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-layer flows that are linearly stable for Re = ∞. The basic methodology consists of two steps. First we eliminate interfacial instabilities by using a yield stress fluid in one fluid layer and ensuring that for the base flow configurations studied we maintain an unyielded plug region at the interface. Secondly we eliminate linear shear instabilities by ensuring a strong enough Couette component in the second fluid layer, imposed via the moving interface. We show that this technique can be applied to both shear-thinning and visco-elastic fluids.  相似文献   

18.
19.
New results for the squeeze flow of Bingham plastics show the shape of the free surface in quasi-steady-state simulations, and its effect on the yielded/unyielded regions and the squeeze force. The present simulation results are obtained for both planar and axisymmetric geometries as in our previous paper [A. Matsoukas, E. Mitsoulis, Geometry effects in squeeze flow of Bingham plastics, J. Non-Newtonian Fluid Mech. 109 (2003) 231–240] and for aspect ratios ranging from 0.01 to 1. Bigger aspect ratios produce more free surface movement relative to the disk radius or plate length, but less movement relative to the gap. Planar geometries give more free surface movement than axisymmetric ones. Viscoplasticity serves to reduce the free surface movement and its deformation. In some cases of planar geometries and big aspect ratios, unyielded regions appear at the free surface, while the small unyielded regions near the center of the disks or plates are not affected. Including the free surface in the calculations of the squeeze force adds a small percentage to the values depending on aspect ratio and Bingham number. The previously fitted easy-to-use equations are corrected to account for that effect.  相似文献   

20.
The Bingham fluid flow between two concentric cylinders is studied using numerical simulation. The cylinders are assumed to rotate independently, and with an imposed axial sliding. The flow field is decomposed with linearity arguments of the base circular Couette shear flow and corresponding deviation field. The numerical methods are based on the expression of the deviation field in terms of complete sets of orthogonal functions and Chebyshev series. The Galerkin projection method is used with the pressure term being eliminated. The Adams Bashforth scheme is adopted for time marching. The results show that the vortices are squeezed toward the inner cylinder due to the effect of yield stress. When the outer cylinder is held stationary, the yield stress plays a role in weakening the vortex flow. However, for the co-rotation situation, the vortex flow is initially strengthened with an increase of yield stress, and then weakened as the yield stress is raised large enough. The annular unyielded regions emerge and stick to the outer cylinder. In case of Taylor Couette flow with an imposed axial sliding, a spiral vortex flow is visible with spiral unyielded region being obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号